Properties

Label 55.4.e
Level 5555
Weight 44
Character orbit 55.e
Rep. character χ55(32,)\chi_{55}(32,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 3232
Newform subspaces 22
Sturm bound 2424
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 55=511 55 = 5 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 55.e (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 55 55
Character field: Q(i)\Q(i)
Newform subspaces: 2 2
Sturm bound: 2424
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M4(55,[χ])M_{4}(55, [\chi]).

Total New Old
Modular forms 40 40 0
Cusp forms 32 32 0
Eisenstein series 8 8 0

Trace form

32q+12q540q11+120q12+156q15272q16256q20+240q22516q25+656q26300q27440q31400q33+1512q36700q371120q38+1400q42++6380q97+O(q100) 32 q + 12 q^{5} - 40 q^{11} + 120 q^{12} + 156 q^{15} - 272 q^{16} - 256 q^{20} + 240 q^{22} - 516 q^{25} + 656 q^{26} - 300 q^{27} - 440 q^{31} - 400 q^{33} + 1512 q^{36} - 700 q^{37} - 1120 q^{38} + 1400 q^{42}+ \cdots + 6380 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(55,[χ])S_{4}^{\mathrm{new}}(55, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
55.4.e.a 55.e 55.e 44 3.2453.245 Q(i,11)\Q(i, \sqrt{11}) Q(11)\Q(\sqrt{-11}) 55.4.e.a 00 1616 00 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(4+4β1+β2+β3)q38β1q4+q+(4+4\beta _{1}+\beta _{2}+\beta _{3})q^{3}-8\beta _{1}q^{4}+\cdots
55.4.e.b 55.e 55.e 2828 3.2453.245 None 55.4.e.b 00 16-16 1212 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]