Defining parameters
Level: | \( N \) | \(=\) | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 55.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(55, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 40 | 0 |
Cusp forms | 32 | 32 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(55, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
55.4.e.a | $4$ | $3.245$ | \(\Q(i, \sqrt{11})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(16\) | \(0\) | \(0\) | \(q+(4+4\beta _{1}+\beta _{2}+\beta _{3})q^{3}-8\beta _{1}q^{4}+\cdots\) |
55.4.e.b | $28$ | $3.245$ | None | \(0\) | \(-16\) | \(12\) | \(0\) |