Properties

Label 55.4.l
Level $55$
Weight $4$
Character orbit 55.l
Rep. character $\chi_{55}(2,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $128$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.l (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(55, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 128 128 0
Eisenstein series 32 32 0

Trace form

\( 128 q - 10 q^{2} - 10 q^{3} - 22 q^{5} - 20 q^{6} + 10 q^{7} - 10 q^{8} + 20 q^{11} - 460 q^{12} - 10 q^{13} + 254 q^{15} + 252 q^{16} + 310 q^{17} - 10 q^{18} - 704 q^{20} - 250 q^{22} + 560 q^{23} + 146 q^{25}+ \cdots - 9210 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(55, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
55.4.l.a 55.l 55.l $128$ $3.245$ None 55.4.l.a \(-10\) \(-10\) \(-22\) \(10\) $\mathrm{SU}(2)[C_{20}]$