Properties

Label 552.2.f
Level $552$
Weight $2$
Character orbit 552.f
Rep. character $\chi_{552}(277,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $4$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(552, [\chi])\).

Total New Old
Modular forms 100 44 56
Cusp forms 92 44 48
Eisenstein series 8 0 8

Trace form

\( 44 q - 12 q^{8} - 44 q^{9} - 4 q^{10} - 8 q^{12} - 4 q^{14} + 24 q^{16} + 8 q^{17} - 4 q^{20} - 20 q^{22} + 12 q^{24} - 52 q^{25} + 16 q^{26} - 8 q^{30} - 24 q^{31} - 20 q^{32} + 8 q^{34} + 4 q^{38} + 16 q^{39}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(552, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
552.2.f.a 552.f 8.b $2$ $4.408$ \(\Q(\sqrt{-1}) \) None 552.2.f.a \(2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+i q^{3}+2 i q^{4}+2 i q^{5}+\cdots\)
552.2.f.b 552.f 8.b $4$ $4.408$ \(\Q(\zeta_{8})\) None 552.2.f.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+\beta_1 q^{3}+2 q^{4}+(\beta_{2}+2\beta_1)q^{5}+\cdots\)
552.2.f.c 552.f 8.b $18$ $4.408$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 552.2.f.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{4}q^{3}-\beta _{2}q^{4}+\beta _{9}q^{5}+\cdots\)
552.2.f.d 552.f 8.b $20$ $4.408$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 552.2.f.d \(-2\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{5}q^{3}+\beta _{2}q^{4}+\beta _{11}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(552, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(552, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)