Defining parameters
Level: | \( N \) | \(=\) | \( 552 = 2^{3} \cdot 3 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 552.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(552, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 44 | 56 |
Cusp forms | 92 | 44 | 48 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(552, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
552.2.f.a | $2$ | $4.408$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(8\) | \(q+(i+1)q^{2}+i q^{3}+2 i q^{4}+2 i q^{5}+\cdots\) |
552.2.f.b | $4$ | $4.408$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+\beta_{3} q^{2}+\beta_1 q^{3}+2 q^{4}+(\beta_{2}+2\beta_1)q^{5}+\cdots\) |
552.2.f.c | $18$ | $4.408$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q-\beta _{3}q^{2}-\beta _{4}q^{3}-\beta _{2}q^{4}+\beta _{9}q^{5}+\cdots\) |
552.2.f.d | $20$ | $4.408$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{1}q^{2}+\beta _{5}q^{3}+\beta _{2}q^{4}+\beta _{11}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(552, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(552, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)