Defining parameters
Level: | \( N \) | \(=\) | \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5520.dy (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11760 | 1440 | 10320 |
Cusp forms | 11280 | 1440 | 9840 |
Eisenstein series | 480 | 0 | 480 |
Decomposition of \(S_{2}^{\mathrm{new}}(5520, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5520, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5520, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1840, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2760, [\chi])\)\(^{\oplus 2}\)