Defining parameters
Level: | \( N \) | \(=\) | \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5520.z (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 345 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 292 | 884 |
Cusp forms | 1128 | 284 | 844 |
Eisenstein series | 48 | 8 | 40 |
Decomposition of \(S_{2}^{\mathrm{new}}(5520, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5520, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5520, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2760, [\chi])\)\(^{\oplus 2}\)