Properties

Label 558.2.a
Level $558$
Weight $2$
Character orbit 558.a
Rep. character $\chi_{558}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $10$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(558))\).

Total New Old
Modular forms 104 12 92
Cusp forms 89 12 77
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(31\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(3\)
Plus space\(+\)\(4\)
Minus space\(-\)\(8\)

Trace form

\( 12 q + 12 q^{4} - 4 q^{5} - 4 q^{7} - 4 q^{10} + 2 q^{11} + 6 q^{13} + 4 q^{14} + 12 q^{16} + 4 q^{17} - 8 q^{19} - 4 q^{20} - 6 q^{22} + 12 q^{25} - 10 q^{26} - 4 q^{28} + 14 q^{29} - 4 q^{34} + 24 q^{35}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(558))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 31
558.2.a.a 558.a 1.a $1$ $4.456$ \(\Q\) None 186.2.a.c \(-1\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\)
558.2.a.b 558.a 1.a $1$ $4.456$ \(\Q\) None 558.2.a.b \(-1\) \(0\) \(-1\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-3q^{11}+\cdots\)
558.2.a.c 558.a 1.a $1$ $4.456$ \(\Q\) None 62.2.a.a \(-1\) \(0\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{8}-2q^{10}+2q^{13}+\cdots\)
558.2.a.d 558.a 1.a $1$ $4.456$ \(\Q\) None 558.2.a.d \(-1\) \(0\) \(3\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-4q^{7}-q^{8}-3q^{10}+\cdots\)
558.2.a.e 558.a 1.a $1$ $4.456$ \(\Q\) None 558.2.a.d \(1\) \(0\) \(-3\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-4q^{7}+q^{8}-3q^{10}+\cdots\)
558.2.a.f 558.a 1.a $1$ $4.456$ \(\Q\) None 186.2.a.b \(1\) \(0\) \(-3\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-2q^{7}+q^{8}-3q^{10}+\cdots\)
558.2.a.g 558.a 1.a $1$ $4.456$ \(\Q\) None 558.2.a.b \(1\) \(0\) \(1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+3q^{11}+\cdots\)
558.2.a.h 558.a 1.a $1$ $4.456$ \(\Q\) None 186.2.a.a \(1\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\)
558.2.a.i 558.a 1.a $2$ $4.456$ \(\Q(\sqrt{17}) \) None 186.2.a.d \(-2\) \(0\) \(-3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta )q^{5}+(2-2\beta )q^{7}+\cdots\)
558.2.a.j 558.a 1.a $2$ $4.456$ \(\Q(\sqrt{3}) \) None 62.2.a.b \(2\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2\beta q^{5}+2q^{7}+q^{8}+2\beta q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(558))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(558)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 2}\)