Properties

Label 5580.2.a
Level 55805580
Weight 22
Character orbit 5580.a
Rep. character χ5580(1,)\chi_{5580}(1,\cdot)
Character field Q\Q
Dimension 5050
Newform subspaces 1818
Sturm bound 23042304
Trace bound 2323

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 5580=2232531 5580 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5580.a (trivial)
Character field: Q\Q
Newform subspaces: 18 18
Sturm bound: 23042304
Trace bound: 2323
Distinguishing TpT_p: 77, 1111, 2323

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(5580))M_{2}(\Gamma_0(5580)).

Total New Old
Modular forms 1176 50 1126
Cusp forms 1129 50 1079
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2233553131FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++++62620062625959005959330033
++++++--86860086868282008282440044
++++-++-74740074747070007070440044
++++--++74740074747070007070440044
++-++++-80800080807676007676440044
++-++-++68680068686464006464440044
++--++++80800080807676007676440044
++----68680068686464006464440044
-++++++-70705565656868556363220022
-++++-++76765571717474556969220022
-++-++++70705565656868556363220022
-++---76765571717474556969220022
--++++++76767769697474776767220022
--++--70709961616868995959220022
---++-76768868687474886666220022
----++70706664646868666262220022
Plus space++576576232355355355355323235305302323002323
Minus space-600600272757357357657627275495492424002424

Trace form

50q2q5+4q118q17+12q194q23+50q25+8q2920q374q41+8q4328q47+50q4912q53+8q55+8q59+12q61+4q65+16q67+12q97+O(q100) 50 q - 2 q^{5} + 4 q^{11} - 8 q^{17} + 12 q^{19} - 4 q^{23} + 50 q^{25} + 8 q^{29} - 20 q^{37} - 4 q^{41} + 8 q^{43} - 28 q^{47} + 50 q^{49} - 12 q^{53} + 8 q^{55} + 8 q^{59} + 12 q^{61} + 4 q^{65} + 16 q^{67}+ \cdots - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(5580))S_{2}^{\mathrm{new}}(\Gamma_0(5580)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 5 31
5580.2.a.a 5580.a 1.a 11 44.55744.557 Q\Q None 620.2.a.a 00 00 1-1 2-2 - - ++ ++ SU(2)\mathrm{SU}(2) qq52q72q11+2q13+3q17+q-q^{5}-2q^{7}-2q^{11}+2q^{13}+3q^{17}+\cdots
5580.2.a.b 5580.a 1.a 11 44.55744.557 Q\Q None 1860.2.a.b 00 00 1-1 2-2 - - ++ - SU(2)\mathrm{SU}(2) qq52q7+4q114q13+q25+q-q^{5}-2q^{7}+4q^{11}-4q^{13}+q^{25}+\cdots
5580.2.a.c 5580.a 1.a 11 44.55744.557 Q\Q None 620.2.a.b 00 00 1-1 2-2 - - ++ ++ SU(2)\mathrm{SU}(2) qq52q7+4q114q13+4q23+q-q^{5}-2q^{7}+4q^{11}-4q^{13}+4q^{23}+\cdots
5580.2.a.d 5580.a 1.a 11 44.55744.557 Q\Q None 1860.2.a.a 00 00 1-1 00 - - ++ ++ SU(2)\mathrm{SU}(2) qq52q13+4q174q194q23+q-q^{5}-2q^{13}+4q^{17}-4q^{19}-4q^{23}+\cdots
5580.2.a.e 5580.a 1.a 11 44.55744.557 Q\Q None 1860.2.a.c 00 00 1-1 22 - - ++ ++ SU(2)\mathrm{SU}(2) qq5+2q7+4q11+4q134q17+q-q^{5}+2q^{7}+4q^{11}+4q^{13}-4q^{17}+\cdots
5580.2.a.f 5580.a 1.a 11 44.55744.557 Q\Q None 620.2.a.c 00 00 11 4-4 - - - - SU(2)\mathrm{SU}(2) q+q54q7+2q13+3q177q19+q+q^{5}-4q^{7}+2q^{13}+3q^{17}-7q^{19}+\cdots
5580.2.a.g 5580.a 1.a 22 44.55744.557 Q(6)\Q(\sqrt{6}) None 1860.2.a.d 00 00 22 00 - - - - SU(2)\mathrm{SU}(2) q+q5+βq7+(2β)q132q17+q+q^{5}+\beta q^{7}+(-2-\beta )q^{13}-2q^{17}+\cdots
5580.2.a.h 5580.a 1.a 22 44.55744.557 Q(3)\Q(\sqrt{3}) None 1860.2.a.e 00 00 22 22 - - - ++ SU(2)\mathrm{SU}(2) q+q5+(1+β)q7+4q11+(13β)q13+q+q^{5}+(1+\beta )q^{7}+4q^{11}+(-1-3\beta )q^{13}+\cdots
5580.2.a.i 5580.a 1.a 33 44.55744.557 3.3.7636.1 None 1860.2.a.h 00 00 3-3 00 - - ++ ++ SU(2)\mathrm{SU}(2) qq5β1q72q11+β1q13+(1+)q17+q-q^{5}-\beta _{1}q^{7}-2q^{11}+\beta _{1}q^{13}+(-1+\cdots)q^{17}+\cdots
5580.2.a.j 5580.a 1.a 33 44.55744.557 3.3.404.1 None 1860.2.a.g 00 00 33 2-2 - - - - SU(2)\mathrm{SU}(2) q+q5+(1+β2)q72β2q11+(1+)q13+q+q^{5}+(-1+\beta _{2})q^{7}-2\beta _{2}q^{11}+(1+\cdots)q^{13}+\cdots
5580.2.a.k 5580.a 1.a 33 44.55744.557 3.3.756.1 None 620.2.a.d 00 00 33 00 - - - ++ SU(2)\mathrm{SU}(2) q+q5β2q7+(2β2)q11β2q13+q+q^{5}-\beta _{2}q^{7}+(-2-\beta _{2})q^{11}-\beta _{2}q^{13}+\cdots
5580.2.a.l 5580.a 1.a 33 44.55744.557 3.3.564.1 None 1860.2.a.f 00 00 33 44 - - - ++ SU(2)\mathrm{SU}(2) q+q5+(2β1+β2)q7+2β1q11+q+q^{5}+(2-\beta _{1}+\beta _{2})q^{7}+2\beta _{1}q^{11}+\cdots
5580.2.a.m 5580.a 1.a 44 44.55744.557 4.4.224148.1 None 1860.2.a.i 00 00 4-4 4-4 - - ++ - SU(2)\mathrm{SU}(2) qq5+(1+β1)q7+(β1β2+)q11+q-q^{5}+(-1+\beta _{1})q^{7}+(-\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots
5580.2.a.n 5580.a 1.a 44 44.55744.557 4.4.25492.1 None 620.2.a.e 00 00 4-4 88 - - ++ - SU(2)\mathrm{SU}(2) qq5+(2β2β3)q7+(β2β3)q11+q-q^{5}+(2-\beta _{2}-\beta _{3})q^{7}+(-\beta _{2}-\beta _{3})q^{11}+\cdots
5580.2.a.o 5580.a 1.a 55 44.55744.557 5.5.10758096.1 None 5580.2.a.o 00 00 5-5 4-4 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq5+(1+β1)q7+(β3β4)q11+q-q^{5}+(-1+\beta _{1})q^{7}+(-\beta _{3}-\beta _{4})q^{11}+\cdots
5580.2.a.p 5580.a 1.a 55 44.55744.557 5.5.223952.1 None 5580.2.a.p 00 00 5-5 44 - ++ ++ - SU(2)\mathrm{SU}(2) qq5+(1β2+β3)q7+(2+β1+)q11+q-q^{5}+(1-\beta _{2}+\beta _{3})q^{7}+(-2+\beta _{1}+\cdots)q^{11}+\cdots
5580.2.a.q 5580.a 1.a 55 44.55744.557 5.5.10758096.1 None 5580.2.a.o 00 00 55 4-4 - ++ - ++ SU(2)\mathrm{SU}(2) q+q5+(1+β1)q7+(β3+β4)q11+q+q^{5}+(-1+\beta _{1})q^{7}+(\beta _{3}+\beta _{4})q^{11}+\cdots
5580.2.a.r 5580.a 1.a 55 44.55744.557 5.5.223952.1 None 5580.2.a.p 00 00 55 44 - ++ - - SU(2)\mathrm{SU}(2) q+q5+(1β2+β3)q7+(2β1+β4)q11+q+q^{5}+(1-\beta _{2}+\beta _{3})q^{7}+(2-\beta _{1}+\beta _{4})q^{11}+\cdots

Decomposition of S2old(Γ0(5580))S_{2}^{\mathrm{old}}(\Gamma_0(5580)) into lower level spaces

S2old(Γ0(5580)) S_{2}^{\mathrm{old}}(\Gamma_0(5580)) \simeq S2new(Γ0(15))S_{2}^{\mathrm{new}}(\Gamma_0(15))12^{\oplus 12}\oplusS2new(Γ0(20))S_{2}^{\mathrm{new}}(\Gamma_0(20))6^{\oplus 6}\oplusS2new(Γ0(30))S_{2}^{\mathrm{new}}(\Gamma_0(30))8^{\oplus 8}\oplusS2new(Γ0(31))S_{2}^{\mathrm{new}}(\Gamma_0(31))18^{\oplus 18}\oplusS2new(Γ0(36))S_{2}^{\mathrm{new}}(\Gamma_0(36))4^{\oplus 4}\oplusS2new(Γ0(45))S_{2}^{\mathrm{new}}(\Gamma_0(45))6^{\oplus 6}\oplusS2new(Γ0(62))S_{2}^{\mathrm{new}}(\Gamma_0(62))12^{\oplus 12}\oplusS2new(Γ0(90))S_{2}^{\mathrm{new}}(\Gamma_0(90))4^{\oplus 4}\oplusS2new(Γ0(93))S_{2}^{\mathrm{new}}(\Gamma_0(93))12^{\oplus 12}\oplusS2new(Γ0(124))S_{2}^{\mathrm{new}}(\Gamma_0(124))6^{\oplus 6}\oplusS2new(Γ0(155))S_{2}^{\mathrm{new}}(\Gamma_0(155))9^{\oplus 9}\oplusS2new(Γ0(180))S_{2}^{\mathrm{new}}(\Gamma_0(180))2^{\oplus 2}\oplusS2new(Γ0(186))S_{2}^{\mathrm{new}}(\Gamma_0(186))8^{\oplus 8}\oplusS2new(Γ0(279))S_{2}^{\mathrm{new}}(\Gamma_0(279))6^{\oplus 6}\oplusS2new(Γ0(310))S_{2}^{\mathrm{new}}(\Gamma_0(310))6^{\oplus 6}\oplusS2new(Γ0(372))S_{2}^{\mathrm{new}}(\Gamma_0(372))4^{\oplus 4}\oplusS2new(Γ0(465))S_{2}^{\mathrm{new}}(\Gamma_0(465))6^{\oplus 6}\oplusS2new(Γ0(558))S_{2}^{\mathrm{new}}(\Gamma_0(558))4^{\oplus 4}\oplusS2new(Γ0(620))S_{2}^{\mathrm{new}}(\Gamma_0(620))3^{\oplus 3}\oplusS2new(Γ0(930))S_{2}^{\mathrm{new}}(\Gamma_0(930))4^{\oplus 4}\oplusS2new(Γ0(1116))S_{2}^{\mathrm{new}}(\Gamma_0(1116))2^{\oplus 2}\oplusS2new(Γ0(1395))S_{2}^{\mathrm{new}}(\Gamma_0(1395))3^{\oplus 3}\oplusS2new(Γ0(1860))S_{2}^{\mathrm{new}}(\Gamma_0(1860))2^{\oplus 2}\oplusS2new(Γ0(2790))S_{2}^{\mathrm{new}}(\Gamma_0(2790))2^{\oplus 2}