Properties

Label 560.2.bc
Level $560$
Weight $2$
Character orbit 560.bc
Rep. character $\chi_{560}(251,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $128$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bc (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 112 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(560, [\chi])\).

Total New Old
Modular forms 200 128 72
Cusp forms 184 128 56
Eisenstein series 16 0 16

Trace form

\( 128 q - 4 q^{4} + 8 q^{11} - 8 q^{14} + 20 q^{16} + 20 q^{18} - 52 q^{22} - 16 q^{23} + 44 q^{28} + 16 q^{29} + 40 q^{32} + 16 q^{37} + 60 q^{42} - 8 q^{43} - 108 q^{44} - 40 q^{46} - 4 q^{50} + 80 q^{51}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(560, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
560.2.bc.a 560.bc 112.j $128$ $4.472$ None 560.2.bc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(560, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)