Properties

Label 560.4.q
Level 560560
Weight 44
Character orbit 560.q
Rep. character χ560(81,)\chi_{560}(81,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 9696
Newform subspaces 1818
Sturm bound 384384
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 560.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 18 18
Sturm bound: 384384
Trace bound: 77
Distinguishing TpT_p: 33, 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(560,[χ])M_{4}(560, [\chi]).

Total New Old
Modular forms 600 96 504
Cusp forms 552 96 456
Eisenstein series 48 0 48

Trace form

96q+12q336q7432q9+20q11+180q1968q21+164q231200q25864q27344q29240q31+8q37+696q39296q411480q43220q45++4488q99+O(q100) 96 q + 12 q^{3} - 36 q^{7} - 432 q^{9} + 20 q^{11} + 180 q^{19} - 68 q^{21} + 164 q^{23} - 1200 q^{25} - 864 q^{27} - 344 q^{29} - 240 q^{31} + 8 q^{37} + 696 q^{39} - 296 q^{41} - 1480 q^{43} - 220 q^{45}+ \cdots + 4488 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(560,[χ])S_{4}^{\mathrm{new}}(560, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
560.4.q.a 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 140.4.i.a 00 2-2 5-5 20-20 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2+2ζ6)q35ζ6q5+(118ζ6)q7+q+(-2+2\zeta_{6})q^{3}-5\zeta_{6}q^{5}+(-1-18\zeta_{6})q^{7}+\cdots
560.4.q.b 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 35.4.e.a 00 2-2 5-5 2828 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2+2ζ6)q35ζ6q5+(7+14ζ6)q7+q+(-2+2\zeta_{6})q^{3}-5\zeta_{6}q^{5}+(7+14\zeta_{6})q^{7}+\cdots
560.4.q.c 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 140.4.i.b 00 2-2 55 2828 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2+2ζ6)q3+5ζ6q5+(2114ζ6)q7+q+(-2+2\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(21-14\zeta_{6})q^{7}+\cdots
560.4.q.d 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 70.4.e.c 00 1-1 55 17-17 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q3+5ζ6q5+(119ζ6)q7+q+(-1+\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(1-19\zeta_{6})q^{7}+\cdots
560.4.q.e 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 70.4.e.a 00 11 55 35-35 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+5ζ6q5+(21+7ζ6)q7+q+(1-\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(-21+7\zeta_{6})q^{7}+\cdots
560.4.q.f 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 280.4.q.a 00 77 55 7-7 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(77ζ6)q3+5ζ6q5+(721ζ6)q7+q+(7-7\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(7-21\zeta_{6})q^{7}+\cdots
560.4.q.g 560.q 7.c 22 33.04133.041 Q(3)\Q(\sqrt{-3}) None 70.4.e.b 00 1010 55 28-28 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1010ζ6)q3+5ζ6q5+(21+)q7+q+(10-10\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(-21+\cdots)q^{7}+\cdots
560.4.q.h 560.q 7.c 44 33.04133.041 Q(3,46)\Q(\sqrt{-3}, \sqrt{46}) None 140.4.i.e 00 6-6 10-10 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+β13β2)q3+5β2q5+(1+)q7+q+(-3+\beta _{1}-3\beta _{2})q^{3}+5\beta _{2}q^{5}+(-1+\cdots)q^{7}+\cdots
560.4.q.i 560.q 7.c 44 33.04133.041 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 35.4.e.b 00 2-2 10-10 22-22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3β1+β2+3β3)q3+(55β2+)q5+q+(3\beta _{1}+\beta _{2}+3\beta _{3})q^{3}+(-5-5\beta _{2}+\cdots)q^{5}+\cdots
560.4.q.j 560.q 7.c 44 33.04133.041 Q(3,46)\Q(\sqrt{-3}, \sqrt{46}) None 70.4.e.d 00 2-2 10-10 6-6 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β1β2)q3+5β2q5+(1+)q7+q+(-1+\beta _{1}-\beta _{2})q^{3}+5\beta _{2}q^{5}+(1+\cdots)q^{7}+\cdots
560.4.q.k 560.q 7.c 44 33.04133.041 Q(3,37)\Q(\sqrt{-3}, \sqrt{37}) None 140.4.i.d 00 00 1010 36-36 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ2q3+(55β1)q5+(82β1+)q7+q-\beta _{2}q^{3}+(5-5\beta _{1})q^{5}+(-8-2\beta _{1}+\cdots)q^{7}+\cdots
560.4.q.l 560.q 7.c 44 33.04133.041 Q(3,22)\Q(\sqrt{-3}, \sqrt{22}) None 140.4.i.c 00 1010 10-10 5454 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(5+β1+5β2)q3+5β2q5+(15+)q7+q+(5+\beta _{1}+5\beta _{2})q^{3}+5\beta _{2}q^{5}+(15+\cdots)q^{7}+\cdots
560.4.q.m 560.q 7.c 66 33.04133.041 6.0.\cdots.2 None 70.4.e.e 00 44 15-15 14-14 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β1+β3)q3+(5+5β3)q5+(1+)q7+q+(\beta _{1}+\beta _{3})q^{3}+(-5+5\beta _{3})q^{5}+(1+\cdots)q^{7}+\cdots
560.4.q.n 560.q 7.c 1010 33.04133.041 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 35.4.e.c 00 8-8 2525 6262 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β3+β42β5)q3+(55β5)q5+q+(\beta _{3}+\beta _{4}-2\beta _{5})q^{3}+(5-5\beta _{5})q^{5}+\cdots
560.4.q.o 560.q 7.c 1010 33.04133.041 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 280.4.q.b 00 66 25-25 28-28 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β3β7)q35β3q5+(3+)q7+q+(1-\beta _{3}-\beta _{7})q^{3}-5\beta _{3}q^{5}+(-3+\cdots)q^{7}+\cdots
560.4.q.p 560.q 7.c 1212 33.04133.041 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 280.4.q.e 00 8-8 3030 1414 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β1+β3)q3+5β3q5+(β1+)q7+q+(-1-\beta _{1}+\beta _{3})q^{3}+5\beta _{3}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots
560.4.q.q 560.q 7.c 1212 33.04133.041 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 280.4.q.d 00 00 30-30 16-16 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ5q3+(5+5β2)q5+(3+4β2+)q7+q-\beta _{5}q^{3}+(-5+5\beta _{2})q^{5}+(-3+4\beta _{2}+\cdots)q^{7}+\cdots
560.4.q.r 560.q 7.c 1212 33.04133.041 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 280.4.q.c 00 77 3030 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β3+β5)q3+5β3q5+(1β2+)q7+q+(1-\beta _{3}+\beta _{5})q^{3}+5\beta _{3}q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots

Decomposition of S4old(560,[χ])S_{4}^{\mathrm{old}}(560, [\chi]) into lower level spaces