Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(560, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 488 | 0 | 488 |
Cusp forms | 472 | 0 | 472 |
Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{6}^{\mathrm{old}}(560, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)