Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.bd (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(576\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(560, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 968 | 480 | 488 |
Cusp forms | 952 | 480 | 472 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(560, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(560, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)