Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.bz (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(560, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 976 | 0 | 976 |
Cusp forms | 944 | 0 | 944 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{6}^{\mathrm{old}}(560, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)