Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.cx (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 280 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(560, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1952 | 0 | 1952 |
Cusp forms | 1888 | 0 | 1888 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{6}^{\mathrm{old}}(560, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)