Properties

Label 567.2.e
Level 567567
Weight 22
Character orbit 567.e
Rep. character χ567(163,)\chi_{567}(163,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 5656
Newform subspaces 77
Sturm bound 144144
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 567=347 567 = 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 567.e (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 7 7
Sturm bound: 144144
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(567,[χ])M_{2}(567, [\chi]).

Total New Old
Modular forms 168 72 96
Cusp forms 120 56 64
Eisenstein series 48 16 32

Trace form

56q22q4+8q712q10+4q13+2q168q1910q2528q28+10q312q3712q40+16q43+12q46+8q4914q52108q55+18q58++4q97+O(q100) 56 q - 22 q^{4} + 8 q^{7} - 12 q^{10} + 4 q^{13} + 2 q^{16} - 8 q^{19} - 10 q^{25} - 28 q^{28} + 10 q^{31} - 2 q^{37} - 12 q^{40} + 16 q^{43} + 12 q^{46} + 8 q^{49} - 14 q^{52} - 108 q^{55} + 18 q^{58}+ \cdots + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(567,[χ])S_{2}^{\mathrm{new}}(567, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
567.2.e.a 567.e 7.c 22 4.5284.528 Q(3)\Q(\sqrt{-3}) None 63.2.g.a 1-1 00 11 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qζ6q2+(1ζ6)q4+ζ6q5+(2+)q7+q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}+\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots
567.2.e.b 567.e 7.c 22 4.5284.528 Q(3)\Q(\sqrt{-3}) None 63.2.g.a 11 00 1-1 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q2+(1ζ6)q4ζ6q5+(2+)q7+q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}-\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots
567.2.e.c 567.e 7.c 88 4.5284.528 8.0.1767277521.3 None 567.2.e.c 1-1 00 2-2 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β2β6)q2+(β5+β7)q4+q+(-\beta _{2}-\beta _{6})q^{2}+(-\beta _{5}+\beta _{7})q^{4}+\cdots
567.2.e.d 567.e 7.c 88 4.5284.528 8.0.1767277521.3 None 567.2.e.c 11 00 22 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β2+β6)q2+(β5+β7)q4+(1+)q5+q+(\beta _{2}+\beta _{6})q^{2}+(-\beta _{5}+\beta _{7})q^{4}+(1+\cdots)q^{5}+\cdots
567.2.e.e 567.e 7.c 1010 4.5284.528 10.0.\cdots.1 None 63.2.g.b 2-2 00 4-4 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q2+(β3+β6+β7)q4+(1+)q5+q-\beta _{1}q^{2}+(-\beta _{3}+\beta _{6}+\beta _{7})q^{4}+(-1+\cdots)q^{5}+\cdots
567.2.e.f 567.e 7.c 1010 4.5284.528 10.0.\cdots.1 None 63.2.g.b 22 00 44 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+(β3+β6+β7)q4+(1+)q5+q+\beta _{1}q^{2}+(-\beta _{3}+\beta _{6}+\beta _{7})q^{4}+(1+\cdots)q^{5}+\cdots
567.2.e.g 567.e 7.c 1616 4.5284.528 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 567.2.e.g 00 00 00 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q2+(β5β7β8β12+)q4+q-\beta _{1}q^{2}+(-\beta _{5}-\beta _{7}-\beta _{8}-\beta _{12}+\cdots)q^{4}+\cdots

Decomposition of S2old(567,[χ])S_{2}^{\mathrm{old}}(567, [\chi]) into lower level spaces

S2old(567,[χ]) S_{2}^{\mathrm{old}}(567, [\chi]) \simeq S2new(21,[χ])S_{2}^{\mathrm{new}}(21, [\chi])4^{\oplus 4}\oplusS2new(63,[χ])S_{2}^{\mathrm{new}}(63, [\chi])3^{\oplus 3}\oplusS2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi])2^{\oplus 2}