Properties

Label 567.2.e
Level $567$
Weight $2$
Character orbit 567.e
Rep. character $\chi_{567}(163,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $56$
Newform subspaces $7$
Sturm bound $144$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(144\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(567, [\chi])\).

Total New Old
Modular forms 168 72 96
Cusp forms 120 56 64
Eisenstein series 48 16 32

Trace form

\( 56 q - 22 q^{4} + 8 q^{7} + O(q^{10}) \) \( 56 q - 22 q^{4} + 8 q^{7} - 12 q^{10} + 4 q^{13} + 2 q^{16} - 8 q^{19} - 10 q^{25} - 28 q^{28} + 10 q^{31} - 2 q^{37} - 12 q^{40} + 16 q^{43} + 12 q^{46} + 8 q^{49} - 14 q^{52} - 108 q^{55} + 18 q^{58} + 4 q^{61} - 88 q^{64} + 16 q^{67} - 54 q^{70} + 4 q^{73} + 112 q^{76} + 28 q^{79} + 72 q^{82} + 36 q^{85} + 30 q^{88} + 46 q^{91} - 30 q^{94} + 4 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(567, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
567.2.e.a 567.e 7.c $2$ $4.528$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(-1\) \(0\) \(1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}+\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
567.2.e.b 567.e 7.c $2$ $4.528$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(1\) \(0\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}-\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
567.2.e.c 567.e 7.c $8$ $4.528$ 8.0.1767277521.3 None 567.2.e.c \(-1\) \(0\) \(-2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}-\beta _{6})q^{2}+(-\beta _{5}+\beta _{7})q^{4}+\cdots\)
567.2.e.d 567.e 7.c $8$ $4.528$ 8.0.1767277521.3 None 567.2.e.c \(1\) \(0\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{6})q^{2}+(-\beta _{5}+\beta _{7})q^{4}+(1+\cdots)q^{5}+\cdots\)
567.2.e.e 567.e 7.c $10$ $4.528$ 10.0.\(\cdots\).1 None 63.2.g.b \(-2\) \(0\) \(-4\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{3}+\beta _{6}+\beta _{7})q^{4}+(-1+\cdots)q^{5}+\cdots\)
567.2.e.f 567.e 7.c $10$ $4.528$ 10.0.\(\cdots\).1 None 63.2.g.b \(2\) \(0\) \(4\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-\beta _{3}+\beta _{6}+\beta _{7})q^{4}+(1+\cdots)q^{5}+\cdots\)
567.2.e.g 567.e 7.c $16$ $4.528$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 567.2.e.g \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{5}-\beta _{7}-\beta _{8}-\beta _{12}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(567, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(567, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)