Properties

Label 57.4.f
Level 5757
Weight 44
Character orbit 57.f
Rep. character χ57(8,)\chi_{57}(8,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 3636
Newform subspaces 33
Sturm bound 2626
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 57=319 57 = 3 \cdot 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 57.f (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 57 57
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 3 3
Sturm bound: 2626
Trace bound: 33
Distinguishing TpT_p: 22, 77

Dimensions

The following table gives the dimensions of various subspaces of M4(57,[χ])M_{4}(57, [\chi]).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

36q72q4+25q616q7+14q996q10+24q139q15324q16+286q1984q21+150q22+403q24+332q25106q28+904q30+447q331032q34++4069q99+O(q100) 36 q - 72 q^{4} + 25 q^{6} - 16 q^{7} + 14 q^{9} - 96 q^{10} + 24 q^{13} - 9 q^{15} - 324 q^{16} + 286 q^{19} - 84 q^{21} + 150 q^{22} + 403 q^{24} + 332 q^{25} - 106 q^{28} + 904 q^{30} + 447 q^{33} - 1032 q^{34}+ \cdots + 4069 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(57,[χ])S_{4}^{\mathrm{new}}(57, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
57.4.f.a 57.f 57.f 22 3.3633.363 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 57.4.f.a 00 9-9 00 7474 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(33ζ6)q3+8ζ6q4+37q7+q+(-3-3\zeta_{6})q^{3}+8\zeta_{6}q^{4}+37q^{7}+\cdots
57.4.f.b 57.f 57.f 22 3.3633.363 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 57.4.f.b 00 99 00 34-34 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(3+3ζ6)q3+8ζ6q417q7+33ζ6q9+q+(3+3\zeta_{6})q^{3}+8\zeta_{6}q^{4}-17q^{7}+3^{3}\zeta_{6}q^{9}+\cdots
57.4.f.c 57.f 57.f 3232 3.3633.363 None 57.4.f.c 00 00 00 56-56 SU(2)[C6]\mathrm{SU}(2)[C_{6}]