Properties

Label 570.2.f
Level $570$
Weight $2$
Character orbit 570.f
Rep. character $\chi_{570}(341,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $4$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(570, [\chi])\).

Total New Old
Modular forms 128 24 104
Cusp forms 112 24 88
Eisenstein series 16 0 16

Trace form

\( 24 q + 24 q^{4} + 4 q^{6} + 24 q^{7} - 4 q^{9} + 24 q^{16} + 24 q^{19} + 4 q^{24} - 24 q^{25} + 24 q^{28} - 4 q^{36} + 4 q^{39} + 12 q^{42} - 16 q^{43} - 16 q^{45} - 8 q^{54} - 4 q^{57} - 24 q^{58} + 64 q^{61}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(570, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
570.2.f.a 570.f 57.d $4$ $4.551$ \(\Q(\zeta_{8})\) None 570.2.f.a \(-4\) \(-4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(-\beta_{2}-1)q^{3}+q^{4}+\beta_1 q^{5}+\cdots\)
570.2.f.b 570.f 57.d $4$ $4.551$ \(\Q(\zeta_{8})\) None 570.2.f.a \(4\) \(4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(\beta_{2}+1)q^{3}+q^{4}+\beta_1 q^{5}+\cdots\)
570.2.f.c 570.f 57.d $8$ $4.551$ 8.0.7278137344.1 None 570.2.f.c \(-8\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
570.2.f.d 570.f 57.d $8$ $4.551$ 8.0.7278137344.1 None 570.2.f.c \(8\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(570, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(570, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)