Defining parameters
Level: | \( N \) | \(=\) | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 570.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(570, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 24 | 104 |
Cusp forms | 112 | 24 | 88 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(570, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
570.2.f.a | $4$ | $4.551$ | \(\Q(\zeta_{8})\) | None | \(-4\) | \(-4\) | \(0\) | \(8\) | \(q-q^{2}+(-\beta_{2}-1)q^{3}+q^{4}+\beta_1 q^{5}+\cdots\) |
570.2.f.b | $4$ | $4.551$ | \(\Q(\zeta_{8})\) | None | \(4\) | \(4\) | \(0\) | \(8\) | \(q+q^{2}+(\beta_{2}+1)q^{3}+q^{4}+\beta_1 q^{5}+\cdots\) |
570.2.f.c | $8$ | $4.551$ | 8.0.7278137344.1 | None | \(-8\) | \(2\) | \(0\) | \(4\) | \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\) |
570.2.f.d | $8$ | $4.551$ | 8.0.7278137344.1 | None | \(8\) | \(-2\) | \(0\) | \(4\) | \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(570, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(570, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)