Properties

Label 5733.2.s
Level 57335733
Weight 22
Character orbit 5733.s
Rep. character χ5733(802,)\chi_{5733}(802,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 458458
Sturm bound 15681568

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 5733=327213 5733 = 3^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5733.s (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 91 91
Character field: Q(ζ3)\Q(\zeta_{3})
Sturm bound: 15681568

Dimensions

The following table gives the dimensions of various subspaces of M2(5733,[χ])M_{2}(5733, [\chi]).

Total New Old
Modular forms 1632 474 1158
Cusp forms 1504 458 1046
Eisenstein series 128 16 112

Decomposition of S2new(5733,[χ])S_{2}^{\mathrm{new}}(5733, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(5733,[χ])S_{2}^{\mathrm{old}}(5733, [\chi]) into lower level spaces

S2old(5733,[χ]) S_{2}^{\mathrm{old}}(5733, [\chi]) \simeq S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])6^{\oplus 6}\oplusS2new(273,[χ])S_{2}^{\mathrm{new}}(273, [\chi])4^{\oplus 4}\oplusS2new(637,[χ])S_{2}^{\mathrm{new}}(637, [\chi])3^{\oplus 3}\oplusS2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi])2^{\oplus 2}\oplusS2new(1911,[χ])S_{2}^{\mathrm{new}}(1911, [\chi])2^{\oplus 2}