Properties

Label 575.2.m
Level $575$
Weight $2$
Character orbit 575.m
Rep. character $\chi_{575}(22,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $464$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.m (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 496 496 0
Cusp forms 464 464 0
Eisenstein series 32 32 0

Trace form

\( 464 q - 16 q^{2} - 12 q^{3} - 20 q^{4} - 12 q^{6} - 24 q^{8} - 20 q^{9} - 4 q^{12} - 24 q^{13} + 92 q^{16} - 28 q^{18} + 10 q^{23} + 52 q^{25} - 32 q^{26} + 36 q^{27} - 60 q^{29} - 12 q^{31} - 44 q^{32}+ \cdots + 220 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.m.a 575.m 575.m $464$ $4.591$ None 575.2.m.a \(-16\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$