Defining parameters
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(575))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 186 | 105 | 81 |
Cusp forms | 174 | 105 | 69 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(29\) |
\(+\) | \(-\) | \(-\) | \(20\) |
\(-\) | \(+\) | \(-\) | \(25\) |
\(-\) | \(-\) | \(+\) | \(31\) |
Plus space | \(+\) | \(60\) | |
Minus space | \(-\) | \(45\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(575))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(575))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(575)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)