Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 100 | 308 |
Cusp forms | 360 | 92 | 268 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)