Properties

Label 576.3.q
Level 576576
Weight 33
Character orbit 576.q
Rep. character χ576(65,)\chi_{576}(65,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9292
Newform subspaces 1212
Sturm bound 288288
Trace bound 99

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 576.q (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 12 12
Sturm bound: 288288
Trace bound: 99
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M3(576,[χ])M_{3}(576, [\chi]).

Total New Old
Modular forms 408 100 308
Cusp forms 360 92 268
Eisenstein series 48 8 40

Trace form

92q+6q54q9+2q1314q21+188q25+6q2954q33+8q37+138q41+6q45240q49120q57+2q616q65+262q698q73+6q77+2q97+O(q100) 92 q + 6 q^{5} - 4 q^{9} + 2 q^{13} - 14 q^{21} + 188 q^{25} + 6 q^{29} - 54 q^{33} + 8 q^{37} + 138 q^{41} + 6 q^{45} - 240 q^{49} - 120 q^{57} + 2 q^{61} - 6 q^{65} + 262 q^{69} - 8 q^{73} + 6 q^{77}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(576,[χ])S_{3}^{\mathrm{new}}(576, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
576.3.q.a 576.q 9.d 22 15.69515.695 Q(3)\Q(\sqrt{-3}) None 9.3.d.a 00 3-3 6-6 22 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(3+3ζ6)q3+(4+2ζ6)q5+q+(-3+3\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+\cdots
576.3.q.b 576.q 9.d 22 15.69515.695 Q(3)\Q(\sqrt{-3}) None 9.3.d.a 00 33 6-6 2-2 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(33ζ6)q3+(4+2ζ6)q5+(2+)q7+q+(3-3\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+(-2+\cdots)q^{7}+\cdots
576.3.q.c 576.q 9.d 44 15.69515.695 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) None 72.3.m.a 00 12-12 6-6 66 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3q3+(1+β1β2)q5+(β1+3β2+)q7+q-3q^{3}+(-1+\beta _{1}-\beta _{2})q^{5}+(\beta _{1}+3\beta _{2}+\cdots)q^{7}+\cdots
576.3.q.d 576.q 9.d 44 15.69515.695 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 36.3.g.a 00 3-3 9-9 1-1 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1+β3)q3+(4+β12β2+)q5+q+(-1+\beta _{3})q^{3}+(-4+\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots
576.3.q.e 576.q 9.d 44 15.69515.695 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) None 18.3.d.a 00 00 1818 2-2 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1+2β1+β3)q3+(3+3β1)q5+q+(-1+2\beta _{1}+\beta _{3})q^{3}+(3+3\beta _{1})q^{5}+\cdots
576.3.q.f 576.q 9.d 44 15.69515.695 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) None 18.3.d.a 00 00 1818 22 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(12β1+β3)q3+(3+3β1)q5+q+(1-2\beta _{1}+\beta _{3})q^{3}+(3+3\beta _{1})q^{5}+\cdots
576.3.q.g 576.q 9.d 44 15.69515.695 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 36.3.g.a 00 33 9-9 11 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β3)q3+(4+β12β2+β3)q5+q+(1-\beta _{3})q^{3}+(-4+\beta _{1}-2\beta _{2}+\beta _{3})q^{5}+\cdots
576.3.q.h 576.q 9.d 44 15.69515.695 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) None 72.3.m.a 00 1212 6-6 6-6 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3q3+(1+β1β2)q5+(β1+)q7+q+3q^{3}+(-1+\beta _{1}-\beta _{2})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots
576.3.q.i 576.q 9.d 88 15.69515.695 8.0.\cdots.9 None 72.3.m.b 00 10-10 66 66 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1+β2+β7)q3+(1+β2+β3+)q5+q+(-1+\beta _{2}+\beta _{7})q^{3}+(1+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots
576.3.q.j 576.q 9.d 88 15.69515.695 8.0.\cdots.9 None 72.3.m.b 00 1010 66 6-6 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β2β7)q3+(1+β2+β3+β5+)q5+q+(1-\beta _{2}-\beta _{7})q^{3}+(1+\beta _{2}+\beta _{3}+\beta _{5}+\cdots)q^{5}+\cdots
576.3.q.k 576.q 9.d 2424 15.69515.695 None 288.3.q.a 00 00 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]
576.3.q.l 576.q 9.d 2424 15.69515.695 None 288.3.q.b 00 00 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S3old(576,[χ])S_{3}^{\mathrm{old}}(576, [\chi]) into lower level spaces

S3old(576,[χ]) S_{3}^{\mathrm{old}}(576, [\chi]) \simeq S3new(9,[χ])S_{3}^{\mathrm{new}}(9, [\chi])7^{\oplus 7}\oplusS3new(18,[χ])S_{3}^{\mathrm{new}}(18, [\chi])6^{\oplus 6}\oplusS3new(36,[χ])S_{3}^{\mathrm{new}}(36, [\chi])5^{\oplus 5}\oplusS3new(72,[χ])S_{3}^{\mathrm{new}}(72, [\chi])4^{\oplus 4}\oplusS3new(144,[χ])S_{3}^{\mathrm{new}}(144, [\chi])3^{\oplus 3}\oplusS3new(288,[χ])S_{3}^{\mathrm{new}}(288, [\chi])2^{\oplus 2}