Properties

Label 576.8
Level 576
Weight 8
Dimension 28629
Nonzero newspaces 16
Sturm bound 147456
Trace bound 25

Downloads

Learn more

Defining parameters

Level: N N = 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k = 8 8
Nonzero newspaces: 16 16
Sturm bound: 147456147456
Trace bound: 2525

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ1(576))M_{8}(\Gamma_1(576)).

Total New Old
Modular forms 65088 28827 36261
Cusp forms 63936 28629 35307
Eisenstein series 1152 198 954

Trace form

28629q24q224q324q424q532q620q724q840q972q101222q1132q127088q1324q1424q1524q165858q1732q18++9729704q99+O(q100) 28629 q - 24 q^{2} - 24 q^{3} - 24 q^{4} - 24 q^{5} - 32 q^{6} - 20 q^{7} - 24 q^{8} - 40 q^{9} - 72 q^{10} - 1222 q^{11} - 32 q^{12} - 7088 q^{13} - 24 q^{14} - 24 q^{15} - 24 q^{16} - 5858 q^{17} - 32 q^{18}+ \cdots + 9729704 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ1(576))S_{8}^{\mathrm{new}}(\Gamma_1(576))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
576.8.a χ576(1,)\chi_{576}(1, \cdot) 576.8.a.a 1 1
576.8.a.b 1
576.8.a.c 1
576.8.a.d 1
576.8.a.e 1
576.8.a.f 1
576.8.a.g 1
576.8.a.h 1
576.8.a.i 1
576.8.a.j 1
576.8.a.k 1
576.8.a.l 1
576.8.a.m 1
576.8.a.n 1
576.8.a.o 1
576.8.a.p 1
576.8.a.q 1
576.8.a.r 1
576.8.a.s 1
576.8.a.t 1
576.8.a.u 1
576.8.a.v 1
576.8.a.w 1
576.8.a.x 1
576.8.a.y 1
576.8.a.z 1
576.8.a.ba 1
576.8.a.bb 2
576.8.a.bc 2
576.8.a.bd 2
576.8.a.be 2
576.8.a.bf 2
576.8.a.bg 2
576.8.a.bh 2
576.8.a.bi 2
576.8.a.bj 2
576.8.a.bk 2
576.8.a.bl 2
576.8.a.bm 2
576.8.a.bn 2
576.8.a.bo 2
576.8.a.bp 2
576.8.a.bq 2
576.8.a.br 2
576.8.a.bs 4
576.8.a.bt 4
576.8.c χ576(575,)\chi_{576}(575, \cdot) 576.8.c.a 2 1
576.8.c.b 2
576.8.c.c 4
576.8.c.d 8
576.8.c.e 12
576.8.c.f 12
576.8.c.g 16
576.8.d χ576(289,)\chi_{576}(289, \cdot) 576.8.d.a 2 1
576.8.d.b 4
576.8.d.c 4
576.8.d.d 4
576.8.d.e 4
576.8.d.f 8
576.8.d.g 8
576.8.d.h 8
576.8.d.i 12
576.8.d.j 16
576.8.f χ576(287,)\chi_{576}(287, \cdot) 576.8.f.a 16 1
576.8.f.b 40
576.8.i χ576(193,)\chi_{576}(193, \cdot) n/a 332 2
576.8.k χ576(145,)\chi_{576}(145, \cdot) n/a 138 2
576.8.l χ576(143,)\chi_{576}(143, \cdot) n/a 112 2
576.8.p χ576(95,)\chi_{576}(95, \cdot) n/a 336 2
576.8.r χ576(97,)\chi_{576}(97, \cdot) n/a 336 2
576.8.s χ576(191,)\chi_{576}(191, \cdot) n/a 332 2
576.8.v χ576(73,)\chi_{576}(73, \cdot) None 0 4
576.8.w χ576(71,)\chi_{576}(71, \cdot) None 0 4
576.8.y χ576(47,)\chi_{576}(47, \cdot) n/a 664 4
576.8.bb χ576(49,)\chi_{576}(49, \cdot) n/a 664 4
576.8.bd χ576(37,)\chi_{576}(37, \cdot) n/a 2232 8
576.8.be χ576(35,)\chi_{576}(35, \cdot) n/a 1792 8
576.8.bg χ576(25,)\chi_{576}(25, \cdot) None 0 8
576.8.bj χ576(23,)\chi_{576}(23, \cdot) None 0 8
576.8.bl χ576(11,)\chi_{576}(11, \cdot) n/a 10720 16
576.8.bm χ576(13,)\chi_{576}(13, \cdot) n/a 10720 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S8old(Γ1(576))S_{8}^{\mathrm{old}}(\Gamma_1(576)) into lower level spaces

S8old(Γ1(576)) S_{8}^{\mathrm{old}}(\Gamma_1(576)) \cong S8new(Γ1(1))S_{8}^{\mathrm{new}}(\Gamma_1(1))21^{\oplus 21}\oplusS8new(Γ1(2))S_{8}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS8new(Γ1(3))S_{8}^{\mathrm{new}}(\Gamma_1(3))14^{\oplus 14}\oplusS8new(Γ1(4))S_{8}^{\mathrm{new}}(\Gamma_1(4))15^{\oplus 15}\oplusS8new(Γ1(6))S_{8}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS8new(Γ1(8))S_{8}^{\mathrm{new}}(\Gamma_1(8))12^{\oplus 12}\oplusS8new(Γ1(9))S_{8}^{\mathrm{new}}(\Gamma_1(9))7^{\oplus 7}\oplusS8new(Γ1(12))S_{8}^{\mathrm{new}}(\Gamma_1(12))10^{\oplus 10}\oplusS8new(Γ1(16))S_{8}^{\mathrm{new}}(\Gamma_1(16))9^{\oplus 9}\oplusS8new(Γ1(18))S_{8}^{\mathrm{new}}(\Gamma_1(18))6^{\oplus 6}\oplusS8new(Γ1(24))S_{8}^{\mathrm{new}}(\Gamma_1(24))8^{\oplus 8}\oplusS8new(Γ1(32))S_{8}^{\mathrm{new}}(\Gamma_1(32))6^{\oplus 6}\oplusS8new(Γ1(36))S_{8}^{\mathrm{new}}(\Gamma_1(36))5^{\oplus 5}\oplusS8new(Γ1(48))S_{8}^{\mathrm{new}}(\Gamma_1(48))6^{\oplus 6}\oplusS8new(Γ1(64))S_{8}^{\mathrm{new}}(\Gamma_1(64))3^{\oplus 3}\oplusS8new(Γ1(72))S_{8}^{\mathrm{new}}(\Gamma_1(72))4^{\oplus 4}\oplusS8new(Γ1(96))S_{8}^{\mathrm{new}}(\Gamma_1(96))4^{\oplus 4}\oplusS8new(Γ1(144))S_{8}^{\mathrm{new}}(\Gamma_1(144))3^{\oplus 3}\oplusS8new(Γ1(192))S_{8}^{\mathrm{new}}(\Gamma_1(192))2^{\oplus 2}\oplusS8new(Γ1(288))S_{8}^{\mathrm{new}}(\Gamma_1(288))2^{\oplus 2}