Defining parameters
Level: | \( N \) | = | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 16 \) | ||
Sturm bound: | \(147456\) | ||
Trace bound: | \(25\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(576))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 65088 | 28827 | 36261 |
Cusp forms | 63936 | 28629 | 35307 |
Eisenstein series | 1152 | 198 | 954 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(576))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(576))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(576)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 21}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 15}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(576))\)\(^{\oplus 1}\)