Defining parameters
Level: | \( N \) | \(=\) | \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5760.cn (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 96 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5760, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4736 | 256 | 4480 |
Cusp forms | 4480 | 256 | 4224 |
Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{new}}(5760, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5760, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1920, [\chi])\)\(^{\oplus 2}\)