Properties

Label 580.4.c
Level $580$
Weight $4$
Character orbit 580.c
Rep. character $\chi_{580}(349,\cdot)$
Character field $\Q$
Dimension $42$
Newform subspaces $2$
Sturm bound $360$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 580 = 2^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 580.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(360\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(580, [\chi])\).

Total New Old
Modular forms 276 42 234
Cusp forms 264 42 222
Eisenstein series 12 0 12

Trace form

\( 42 q - 16 q^{5} - 314 q^{9} - 72 q^{11} - 160 q^{15} + 288 q^{19} - 264 q^{21} + 40 q^{25} + 174 q^{29} + 216 q^{31} + 536 q^{35} - 1288 q^{39} - 764 q^{41} + 702 q^{45} - 2782 q^{49} + 1952 q^{51} + 1240 q^{55}+ \cdots + 5904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(580, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
580.4.c.a 580.c 5.b $18$ $34.221$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 580.4.c.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{8}q^{5}+\beta _{16}q^{7}+(-4+\beta _{2}+\cdots)q^{9}+\cdots\)
580.4.c.b 580.c 5.b $24$ $34.221$ None 580.4.c.b \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(580, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(580, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 2}\)