Properties

Label 580.4.c
Level 580580
Weight 44
Character orbit 580.c
Rep. character χ580(349,)\chi_{580}(349,\cdot)
Character field Q\Q
Dimension 4242
Newform subspaces 22
Sturm bound 360360
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 580=22529 580 = 2^{2} \cdot 5 \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 580.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 360360
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(580,[χ])M_{4}(580, [\chi]).

Total New Old
Modular forms 276 42 234
Cusp forms 264 42 222
Eisenstein series 12 0 12

Trace form

42q16q5314q972q11160q15+288q19264q21+40q25+174q29+216q31+536q351288q39764q41+702q452782q49+1952q51+1240q55++5904q99+O(q100) 42 q - 16 q^{5} - 314 q^{9} - 72 q^{11} - 160 q^{15} + 288 q^{19} - 264 q^{21} + 40 q^{25} + 174 q^{29} + 216 q^{31} + 536 q^{35} - 1288 q^{39} - 764 q^{41} + 702 q^{45} - 2782 q^{49} + 1952 q^{51} + 1240 q^{55}+ \cdots + 5904 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(580,[χ])S_{4}^{\mathrm{new}}(580, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
580.4.c.a 580.c 5.b 1818 34.22134.221 Q[x]/(x18+)\mathbb{Q}[x]/(x^{18} + \cdots) None 580.4.c.a 00 00 8-8 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q3+β8q5+β16q7+(4+β2+)q9+q+\beta _{1}q^{3}+\beta _{8}q^{5}+\beta _{16}q^{7}+(-4+\beta _{2}+\cdots)q^{9}+\cdots
580.4.c.b 580.c 5.b 2424 34.22134.221 None 580.4.c.b 00 00 8-8 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(580,[χ])S_{4}^{\mathrm{old}}(580, [\chi]) into lower level spaces

S4old(580,[χ]) S_{4}^{\mathrm{old}}(580, [\chi]) \simeq S4new(10,[χ])S_{4}^{\mathrm{new}}(10, [\chi])4^{\oplus 4}\oplusS4new(20,[χ])S_{4}^{\mathrm{new}}(20, [\chi])2^{\oplus 2}\oplusS4new(145,[χ])S_{4}^{\mathrm{new}}(145, [\chi])3^{\oplus 3}\oplusS4new(290,[χ])S_{4}^{\mathrm{new}}(290, [\chi])2^{\oplus 2}