Defining parameters
Level: | \( N \) | \(=\) | \( 580 = 2^{2} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 580.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(580, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 276 | 42 | 234 |
Cusp forms | 264 | 42 | 222 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(580, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
580.4.c.a | $18$ | $34.221$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{8}q^{5}+\beta _{16}q^{7}+(-4+\beta _{2}+\cdots)q^{9}+\cdots\) |
580.4.c.b | $24$ | $34.221$ | None | \(0\) | \(0\) | \(-8\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(580, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(580, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 2}\)