Properties

Label 585.2.a
Level 585585
Weight 22
Character orbit 585.a
Rep. character χ585(1,)\chi_{585}(1,\cdot)
Character field Q\Q
Dimension 2020
Newform subspaces 1414
Sturm bound 168168
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 585=32513 585 = 3^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 585.a (trivial)
Character field: Q\Q
Newform subspaces: 14 14
Sturm bound: 168168
Trace bound: 77
Distinguishing TpT_p: 22, 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(585))M_{2}(\Gamma_0(585)).

Total New Old
Modular forms 92 20 72
Cusp forms 77 20 57
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

33551313FrickeDim
++++++++33
++++--11
++-++-33
++--++11
-++++-33
-++-++22
--++++22
----55
Plus space++88
Minus space-1212

Trace form

20q2q2+20q4+2q54q76q8+4q104q112q13+16q14+20q16+4q178q19+6q2024q22+20q2512q2816q29+12q31++38q98+O(q100) 20 q - 2 q^{2} + 20 q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8} + 4 q^{10} - 4 q^{11} - 2 q^{13} + 16 q^{14} + 20 q^{16} + 4 q^{17} - 8 q^{19} + 6 q^{20} - 24 q^{22} + 20 q^{25} - 12 q^{28} - 16 q^{29} + 12 q^{31}+ \cdots + 38 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(585))S_{2}^{\mathrm{new}}(\Gamma_0(585)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 5 13
585.2.a.a 585.a 1.a 11 4.6714.671 Q\Q None 195.2.a.d 2-2 00 1-1 3-3 - ++ - SU(2)\mathrm{SU}(2) q2q2+2q4q53q7+2q10+q-2q^{2}+2q^{4}-q^{5}-3q^{7}+2q^{10}+\cdots
585.2.a.b 585.a 1.a 11 4.6714.671 Q\Q None 195.2.a.b 2-2 00 1-1 33 - ++ ++ SU(2)\mathrm{SU}(2) q2q2+2q4q5+3q7+2q10+q-2q^{2}+2q^{4}-q^{5}+3q^{7}+2q^{10}+\cdots
585.2.a.c 585.a 1.a 11 4.6714.671 Q\Q None 195.2.a.c 2-2 00 11 1-1 - - ++ SU(2)\mathrm{SU}(2) q2q2+2q4+q5q72q10+q-2q^{2}+2q^{4}+q^{5}-q^{7}-2q^{10}+\cdots
585.2.a.d 585.a 1.a 11 4.6714.671 Q\Q None 585.2.a.d 1-1 00 1-1 22 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2q4q5+2q7+3q8+q10+q-q^{2}-q^{4}-q^{5}+2q^{7}+3q^{8}+q^{10}+\cdots
585.2.a.e 585.a 1.a 11 4.6714.671 Q\Q None 585.2.a.e 00 00 1-1 1-1 ++ ++ - SU(2)\mathrm{SU}(2) q2q4q5q7+3q11+q13+q-2q^{4}-q^{5}-q^{7}+3q^{11}+q^{13}+\cdots
585.2.a.f 585.a 1.a 11 4.6714.671 Q\Q None 585.2.a.e 00 00 11 1-1 ++ - - SU(2)\mathrm{SU}(2) q2q4+q5q73q11+q13+q-2q^{4}+q^{5}-q^{7}-3q^{11}+q^{13}+\cdots
585.2.a.g 585.a 1.a 11 4.6714.671 Q\Q None 195.2.a.a 11 00 1-1 00 - ++ - SU(2)\mathrm{SU}(2) q+q2q4q53q8q104q11+q+q^{2}-q^{4}-q^{5}-3q^{8}-q^{10}-4q^{11}+\cdots
585.2.a.h 585.a 1.a 11 4.6714.671 Q\Q None 65.2.a.a 11 00 11 4-4 - - ++ SU(2)\mathrm{SU}(2) q+q2q4+q54q73q8+q10+q+q^{2}-q^{4}+q^{5}-4q^{7}-3q^{8}+q^{10}+\cdots
585.2.a.i 585.a 1.a 11 4.6714.671 Q\Q None 585.2.a.d 11 00 11 22 ++ - ++ SU(2)\mathrm{SU}(2) q+q2q4+q5+2q73q8+q10+q+q^{2}-q^{4}+q^{5}+2q^{7}-3q^{8}+q^{10}+\cdots
585.2.a.j 585.a 1.a 22 4.6714.671 Q(17)\Q(\sqrt{17}) None 585.2.a.j 1-1 00 2-2 5-5 ++ ++ ++ SU(2)\mathrm{SU}(2) qβq2+(2+β)q4q5+(3+β)q7+q-\beta q^{2}+(2+\beta )q^{4}-q^{5}+(-3+\beta )q^{7}+\cdots
585.2.a.k 585.a 1.a 22 4.6714.671 Q(3)\Q(\sqrt{3}) None 65.2.a.c 00 00 22 44 - - - SU(2)\mathrm{SU}(2) q+βq2+q4+q5+2q7βq8+βq10+q+\beta q^{2}+q^{4}+q^{5}+2q^{7}-\beta q^{8}+\beta q^{10}+\cdots
585.2.a.l 585.a 1.a 22 4.6714.671 Q(17)\Q(\sqrt{17}) None 585.2.a.j 11 00 22 5-5 ++ - ++ SU(2)\mathrm{SU}(2) q+βq2+(2+β)q4+q5+(3+β)q7+q+\beta q^{2}+(2+\beta )q^{4}+q^{5}+(-3+\beta )q^{7}+\cdots
585.2.a.m 585.a 1.a 22 4.6714.671 Q(2)\Q(\sqrt{2}) None 65.2.a.b 22 00 2-2 44 - ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q2+(1+2β)q4q5+(2+2β)q7+q+(1+\beta )q^{2}+(1+2\beta )q^{4}-q^{5}+(2+2\beta )q^{7}+\cdots
585.2.a.n 585.a 1.a 33 4.6714.671 3.3.316.1 None 195.2.a.e 00 00 33 11 - - - SU(2)\mathrm{SU}(2) q+β1q2+(3+β2)q4+q5β2q7+q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+q^{5}-\beta _{2}q^{7}+\cdots

Decomposition of S2old(Γ0(585))S_{2}^{\mathrm{old}}(\Gamma_0(585)) into lower level spaces