Defining parameters
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.cf (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 368 | 148 | 220 |
Cusp forms | 304 | 132 | 172 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
585.2.cf.a | $20$ | $4.671$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(4\) | \(0\) | \(6\) | \(-6\) | \(q+(\beta _{3}-\beta _{4})q^{2}+(2\beta _{1}+\beta _{2}-\beta _{4}+\beta _{10}+\cdots)q^{4}+\cdots\) |
585.2.cf.b | $56$ | $4.671$ | None | \(-4\) | \(0\) | \(-4\) | \(0\) | ||
585.2.cf.c | $56$ | $4.671$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)