Properties

Label 585.2.cf
Level $585$
Weight $2$
Character orbit 585.cf
Rep. character $\chi_{585}(163,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $132$
Newform subspaces $3$
Sturm bound $168$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.cf (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(168\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 368 148 220
Cusp forms 304 132 172
Eisenstein series 64 16 48

Trace form

\( 132 q - 62 q^{4} + 2 q^{5} - 6 q^{7} + 12 q^{8} - 10 q^{10} + 8 q^{11} - 10 q^{13} - 58 q^{16} + 2 q^{17} - 12 q^{19} - 2 q^{20} - 6 q^{23} - 10 q^{25} + 24 q^{26} + 6 q^{28} - 16 q^{31} - 2 q^{32} + 30 q^{34}+ \cdots - 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.cf.a 585.cf 65.o $20$ $4.671$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 65.2.o.a \(4\) \(0\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{3}-\beta _{4})q^{2}+(2\beta _{1}+\beta _{2}-\beta _{4}+\beta _{10}+\cdots)q^{4}+\cdots\)
585.2.cf.b 585.cf 65.o $56$ $4.671$ None 195.2.bd.a \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$
585.2.cf.c 585.cf 65.o $56$ $4.671$ None 585.2.cf.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)