Properties

Label 585.2.dd
Level $585$
Weight $2$
Character orbit 585.dd
Rep. character $\chi_{585}(41,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $224$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dd (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 352 224 128
Cusp forms 320 224 96
Eisenstein series 32 0 32

Trace form

\( 224 q - 12 q^{6} - 8 q^{7} + 36 q^{8} - 12 q^{11} - 4 q^{15} + 112 q^{16} + 44 q^{18} - 8 q^{19} - 36 q^{21} - 8 q^{24} - 48 q^{26} + 24 q^{27} - 16 q^{28} - 48 q^{30} - 16 q^{31} - 72 q^{32} + 4 q^{33}+ \cdots + 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.dd.a 585.dd 117.ac $224$ $4.671$ None 585.2.cm.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)