Properties

Label 585.2.dv
Level $585$
Weight $2$
Character orbit 585.dv
Rep. character $\chi_{585}(292,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $320$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dv (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 585 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 352 352 0
Cusp forms 320 320 0
Eisenstein series 32 32 0

Trace form

\( 320 q - 4 q^{2} - 2 q^{3} + 304 q^{4} - 2 q^{5} - 8 q^{6} - 6 q^{7} - 24 q^{8} - 12 q^{9} + O(q^{10}) \) \( 320 q - 4 q^{2} - 2 q^{3} + 304 q^{4} - 2 q^{5} - 8 q^{6} - 6 q^{7} - 24 q^{8} - 12 q^{9} - 8 q^{10} - 12 q^{11} - 22 q^{12} - 2 q^{13} - 48 q^{14} - 2 q^{15} + 264 q^{16} - 12 q^{17} - 36 q^{18} - 38 q^{20} - 16 q^{21} - 4 q^{22} - 14 q^{23} - 56 q^{24} - 20 q^{27} - 24 q^{28} - 10 q^{30} - 4 q^{31} - 52 q^{32} - 22 q^{33} - 8 q^{34} + 14 q^{35} - 60 q^{36} - 12 q^{37} - 32 q^{38} + 4 q^{39} - 20 q^{40} + 4 q^{41} - 2 q^{42} - 6 q^{43} - 8 q^{44} + 48 q^{45} - 16 q^{46} + 30 q^{47} - 70 q^{48} + 112 q^{49} - 60 q^{50} - 38 q^{52} - 16 q^{53} - 4 q^{55} - 108 q^{56} - 24 q^{57} + 16 q^{59} - 26 q^{60} + 4 q^{61} + 4 q^{62} - 50 q^{63} + 192 q^{64} + 18 q^{65} + 2 q^{67} + 14 q^{68} - 24 q^{69} - 54 q^{70} - 150 q^{72} - 16 q^{73} + 22 q^{75} - 20 q^{76} + 44 q^{77} - 62 q^{78} - 56 q^{80} + 8 q^{81} - 44 q^{82} + 84 q^{83} - 124 q^{84} - 36 q^{85} + 68 q^{86} + 38 q^{87} + 8 q^{88} - 64 q^{90} - 16 q^{91} - 56 q^{92} - 6 q^{93} - 48 q^{94} - 64 q^{96} - 46 q^{97} + 50 q^{98} + 20 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.dv.a 585.dv 585.cv $320$ $4.671$ None 585.2.ca.a \(-4\) \(-2\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{12}]$