Properties

Label 585.2.j.g.406.3
Level $585$
Weight $2$
Character 585.406
Analytic conductor $4.671$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(406,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.591408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.3
Root \(0.155554 - 0.269427i\) of defining polynomial
Character \(\chi\) \(=\) 585.406
Dual form 585.2.j.g.451.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10716 + 1.91766i) q^{2} +(-1.45161 + 2.51426i) q^{4} +1.00000 q^{5} +(1.91827 - 3.32254i) q^{7} -2.00000 q^{8} +(1.10716 + 1.91766i) q^{10} +(2.90321 + 5.02851i) q^{11} +(0.533338 - 3.56589i) q^{13} +8.49532 q^{14} +(0.688892 + 1.19320i) q^{16} +(-1.79605 + 3.11085i) q^{17} +(-1.07382 + 1.85991i) q^{19} +(-1.45161 + 2.51426i) q^{20} +(-6.42864 + 11.1347i) q^{22} +(-3.11753 - 5.39972i) q^{23} +1.00000 q^{25} +(7.42864 - 2.92525i) q^{26} +(5.56914 + 9.64603i) q^{28} +(1.03334 + 1.78979i) q^{29} -5.28100 q^{31} +(-3.52543 + 6.10622i) q^{32} -7.95407 q^{34} +(1.91827 - 3.32254i) q^{35} +(2.37778 + 4.11844i) q^{37} -4.75557 q^{38} -2.00000 q^{40} +(-5.55877 - 9.62806i) q^{41} +(4.74766 - 8.22318i) q^{43} -16.8573 q^{44} +(6.90321 - 11.9567i) q^{46} -2.21432 q^{47} +(-3.85950 - 6.68485i) q^{49} +(1.10716 + 1.91766i) q^{50} +(8.19135 + 6.51721i) q^{52} +0.815792 q^{53} +(2.90321 + 5.02851i) q^{55} +(-3.83654 + 6.64507i) q^{56} +(-2.28814 + 3.96318i) q^{58} +(-4.98741 + 8.63844i) q^{59} +(-2.64050 + 4.57348i) q^{61} +(-5.84691 - 10.1271i) q^{62} -12.8573 q^{64} +(0.533338 - 3.56589i) q^{65} +(1.77777 + 3.07919i) q^{67} +(-5.21432 - 9.03147i) q^{68} +8.49532 q^{70} +(2.86987 - 4.97077i) q^{71} -2.78568 q^{73} +(-5.26517 + 9.11955i) q^{74} +(-3.11753 - 5.39972i) q^{76} +22.2766 q^{77} +12.3319 q^{79} +(0.688892 + 1.19320i) q^{80} +(12.3089 - 21.3196i) q^{82} -0.622216 q^{83} +(-1.79605 + 3.11085i) q^{85} +21.0257 q^{86} +(-5.80642 - 10.0570i) q^{88} +(-8.08419 - 14.0022i) q^{89} +(-10.8247 - 8.61236i) q^{91} +18.1017 q^{92} +(-2.45161 - 4.24631i) q^{94} +(-1.07382 + 1.85991i) q^{95} +(-2.12544 + 3.68137i) q^{97} +(8.54617 - 14.8024i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} + 6 q^{5} + 5 q^{7} - 12 q^{8} + 4 q^{11} + 3 q^{13} + 24 q^{14} + 4 q^{16} - 4 q^{17} - 2 q^{20} - 12 q^{22} + 8 q^{23} + 6 q^{25} + 18 q^{26} + 6 q^{29} - 18 q^{31} - 8 q^{32} - 8 q^{34}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10716 + 1.91766i 0.782880 + 1.35599i 0.930257 + 0.366908i \(0.119584\pi\)
−0.147377 + 0.989080i \(0.547083\pi\)
\(3\) 0 0
\(4\) −1.45161 + 2.51426i −0.725803 + 1.25713i
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.91827 3.32254i 0.725037 1.25580i −0.233922 0.972255i \(-0.575156\pi\)
0.958959 0.283546i \(-0.0915107\pi\)
\(8\) −2.00000 −0.707107
\(9\) 0 0
\(10\) 1.10716 + 1.91766i 0.350115 + 0.606416i
\(11\) 2.90321 + 5.02851i 0.875351 + 1.51615i 0.856388 + 0.516333i \(0.172703\pi\)
0.0189633 + 0.999820i \(0.493963\pi\)
\(12\) 0 0
\(13\) 0.533338 3.56589i 0.147921 0.988999i
\(14\) 8.49532 2.27047
\(15\) 0 0
\(16\) 0.688892 + 1.19320i 0.172223 + 0.298299i
\(17\) −1.79605 + 3.11085i −0.435607 + 0.754493i −0.997345 0.0728222i \(-0.976799\pi\)
0.561738 + 0.827315i \(0.310133\pi\)
\(18\) 0 0
\(19\) −1.07382 + 1.85991i −0.246352 + 0.426693i −0.962511 0.271244i \(-0.912565\pi\)
0.716159 + 0.697937i \(0.245898\pi\)
\(20\) −1.45161 + 2.51426i −0.324589 + 0.562205i
\(21\) 0 0
\(22\) −6.42864 + 11.1347i −1.37059 + 2.37393i
\(23\) −3.11753 5.39972i −0.650050 1.12592i −0.983110 0.183014i \(-0.941414\pi\)
0.333060 0.942906i \(-0.391919\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 7.42864 2.92525i 1.45688 0.573688i
\(27\) 0 0
\(28\) 5.56914 + 9.64603i 1.05247 + 1.82293i
\(29\) 1.03334 + 1.78979i 0.191886 + 0.332356i 0.945875 0.324530i \(-0.105206\pi\)
−0.753989 + 0.656887i \(0.771873\pi\)
\(30\) 0 0
\(31\) −5.28100 −0.948495 −0.474247 0.880392i \(-0.657280\pi\)
−0.474247 + 0.880392i \(0.657280\pi\)
\(32\) −3.52543 + 6.10622i −0.623213 + 1.07944i
\(33\) 0 0
\(34\) −7.95407 −1.36411
\(35\) 1.91827 3.32254i 0.324246 0.561611i
\(36\) 0 0
\(37\) 2.37778 + 4.11844i 0.390905 + 0.677068i 0.992569 0.121681i \(-0.0388286\pi\)
−0.601664 + 0.798749i \(0.705495\pi\)
\(38\) −4.75557 −0.771455
\(39\) 0 0
\(40\) −2.00000 −0.316228
\(41\) −5.55877 9.62806i −0.868133 1.50365i −0.863902 0.503660i \(-0.831986\pi\)
−0.00423144 0.999991i \(-0.501347\pi\)
\(42\) 0 0
\(43\) 4.74766 8.22318i 0.724011 1.25402i −0.235369 0.971906i \(-0.575630\pi\)
0.959380 0.282118i \(-0.0910369\pi\)
\(44\) −16.8573 −2.54133
\(45\) 0 0
\(46\) 6.90321 11.9567i 1.01782 1.76292i
\(47\) −2.21432 −0.322992 −0.161496 0.986873i \(-0.551632\pi\)
−0.161496 + 0.986873i \(0.551632\pi\)
\(48\) 0 0
\(49\) −3.85950 6.68485i −0.551357 0.954979i
\(50\) 1.10716 + 1.91766i 0.156576 + 0.271198i
\(51\) 0 0
\(52\) 8.19135 + 6.51721i 1.13594 + 0.903775i
\(53\) 0.815792 0.112058 0.0560288 0.998429i \(-0.482156\pi\)
0.0560288 + 0.998429i \(0.482156\pi\)
\(54\) 0 0
\(55\) 2.90321 + 5.02851i 0.391469 + 0.678044i
\(56\) −3.83654 + 6.64507i −0.512679 + 0.887985i
\(57\) 0 0
\(58\) −2.28814 + 3.96318i −0.300448 + 0.520391i
\(59\) −4.98741 + 8.63844i −0.649305 + 1.12463i 0.333984 + 0.942579i \(0.391607\pi\)
−0.983289 + 0.182050i \(0.941727\pi\)
\(60\) 0 0
\(61\) −2.64050 + 4.57348i −0.338081 + 0.585574i −0.984072 0.177772i \(-0.943111\pi\)
0.645991 + 0.763345i \(0.276445\pi\)
\(62\) −5.84691 10.1271i −0.742558 1.28615i
\(63\) 0 0
\(64\) −12.8573 −1.60716
\(65\) 0.533338 3.56589i 0.0661525 0.442294i
\(66\) 0 0
\(67\) 1.77777 + 3.07919i 0.217189 + 0.376183i 0.953948 0.299973i \(-0.0969778\pi\)
−0.736758 + 0.676156i \(0.763645\pi\)
\(68\) −5.21432 9.03147i −0.632329 1.09523i
\(69\) 0 0
\(70\) 8.49532 1.01538
\(71\) 2.86987 4.97077i 0.340591 0.589922i −0.643951 0.765066i \(-0.722706\pi\)
0.984543 + 0.175145i \(0.0560394\pi\)
\(72\) 0 0
\(73\) −2.78568 −0.326039 −0.163020 0.986623i \(-0.552123\pi\)
−0.163020 + 0.986623i \(0.552123\pi\)
\(74\) −5.26517 + 9.11955i −0.612064 + 1.06013i
\(75\) 0 0
\(76\) −3.11753 5.39972i −0.357605 0.619391i
\(77\) 22.2766 2.53865
\(78\) 0 0
\(79\) 12.3319 1.38744 0.693721 0.720244i \(-0.255970\pi\)
0.693721 + 0.720244i \(0.255970\pi\)
\(80\) 0.688892 + 1.19320i 0.0770205 + 0.133403i
\(81\) 0 0
\(82\) 12.3089 21.3196i 1.35929 2.35436i
\(83\) −0.622216 −0.0682970 −0.0341485 0.999417i \(-0.510872\pi\)
−0.0341485 + 0.999417i \(0.510872\pi\)
\(84\) 0 0
\(85\) −1.79605 + 3.11085i −0.194809 + 0.337419i
\(86\) 21.0257 2.26726
\(87\) 0 0
\(88\) −5.80642 10.0570i −0.618967 1.07208i
\(89\) −8.08419 14.0022i −0.856923 1.48423i −0.874850 0.484395i \(-0.839040\pi\)
0.0179269 0.999839i \(-0.494293\pi\)
\(90\) 0 0
\(91\) −10.8247 8.61236i −1.13474 0.902821i
\(92\) 18.1017 1.88723
\(93\) 0 0
\(94\) −2.45161 4.24631i −0.252864 0.437973i
\(95\) −1.07382 + 1.85991i −0.110172 + 0.190823i
\(96\) 0 0
\(97\) −2.12544 + 3.68137i −0.215806 + 0.373787i −0.953522 0.301325i \(-0.902571\pi\)
0.737716 + 0.675112i \(0.235905\pi\)
\(98\) 8.54617 14.8024i 0.863294 1.49527i
\(99\) 0 0
\(100\) −1.45161 + 2.51426i −0.145161 + 0.251426i
\(101\) −1.11753 1.93562i −0.111199 0.192602i 0.805055 0.593200i \(-0.202136\pi\)
−0.916254 + 0.400598i \(0.868802\pi\)
\(102\) 0 0
\(103\) −2.44446 −0.240860 −0.120430 0.992722i \(-0.538427\pi\)
−0.120430 + 0.992722i \(0.538427\pi\)
\(104\) −1.06668 + 7.13177i −0.104596 + 0.699328i
\(105\) 0 0
\(106\) 0.903212 + 1.56441i 0.0877277 + 0.151949i
\(107\) 0.826164 + 1.43096i 0.0798682 + 0.138336i 0.903193 0.429235i \(-0.141217\pi\)
−0.823325 + 0.567571i \(0.807883\pi\)
\(108\) 0 0
\(109\) −2.61285 −0.250265 −0.125133 0.992140i \(-0.539936\pi\)
−0.125133 + 0.992140i \(0.539936\pi\)
\(110\) −6.42864 + 11.1347i −0.612947 + 1.06165i
\(111\) 0 0
\(112\) 5.28592 0.499472
\(113\) 1.21432 2.10326i 0.114234 0.197858i −0.803240 0.595656i \(-0.796892\pi\)
0.917473 + 0.397798i \(0.130225\pi\)
\(114\) 0 0
\(115\) −3.11753 5.39972i −0.290711 0.503527i
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −22.0874 −2.03331
\(119\) 6.89062 + 11.9349i 0.631662 + 1.09407i
\(120\) 0 0
\(121\) −11.3573 + 19.6714i −1.03248 + 1.78831i
\(122\) −11.6938 −1.05871
\(123\) 0 0
\(124\) 7.66593 13.2778i 0.688420 1.19238i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −9.62790 16.6760i −0.854338 1.47976i −0.877258 0.480020i \(-0.840629\pi\)
0.0229193 0.999737i \(-0.492704\pi\)
\(128\) −7.18421 12.4434i −0.635000 1.09985i
\(129\) 0 0
\(130\) 7.42864 2.92525i 0.651535 0.256561i
\(131\) −13.4128 −1.17188 −0.585942 0.810353i \(-0.699275\pi\)
−0.585942 + 0.810353i \(0.699275\pi\)
\(132\) 0 0
\(133\) 4.11975 + 7.13562i 0.357228 + 0.618737i
\(134\) −3.93655 + 6.81830i −0.340066 + 0.589012i
\(135\) 0 0
\(136\) 3.59210 6.22171i 0.308020 0.533507i
\(137\) −2.36741 + 4.10048i −0.202262 + 0.350328i −0.949257 0.314502i \(-0.898162\pi\)
0.746995 + 0.664830i \(0.231496\pi\)
\(138\) 0 0
\(139\) 5.52074 9.56221i 0.468263 0.811056i −0.531079 0.847322i \(-0.678213\pi\)
0.999342 + 0.0362665i \(0.0115465\pi\)
\(140\) 5.56914 + 9.64603i 0.470678 + 0.815238i
\(141\) 0 0
\(142\) 12.7096 1.06657
\(143\) 19.4795 7.67063i 1.62896 0.641450i
\(144\) 0 0
\(145\) 1.03334 + 1.78979i 0.0858141 + 0.148634i
\(146\) −3.08419 5.34198i −0.255250 0.442105i
\(147\) 0 0
\(148\) −13.8064 −1.13488
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 8.81135 0.717057 0.358529 0.933519i \(-0.383279\pi\)
0.358529 + 0.933519i \(0.383279\pi\)
\(152\) 2.14764 3.71983i 0.174197 0.301718i
\(153\) 0 0
\(154\) 24.6637 + 42.7188i 1.98746 + 3.44238i
\(155\) −5.28100 −0.424180
\(156\) 0 0
\(157\) −2.73975 −0.218656 −0.109328 0.994006i \(-0.534870\pi\)
−0.109328 + 0.994006i \(0.534870\pi\)
\(158\) 13.6533 + 23.6483i 1.08620 + 1.88135i
\(159\) 0 0
\(160\) −3.52543 + 6.10622i −0.278710 + 0.482739i
\(161\) −23.9210 −1.88524
\(162\) 0 0
\(163\) 12.3469 21.3855i 0.967084 1.67504i 0.263177 0.964748i \(-0.415230\pi\)
0.703907 0.710292i \(-0.251437\pi\)
\(164\) 32.2766 2.52038
\(165\) 0 0
\(166\) −0.688892 1.19320i −0.0534684 0.0926100i
\(167\) 3.95407 + 6.84865i 0.305975 + 0.529964i 0.977478 0.211038i \(-0.0676843\pi\)
−0.671503 + 0.741002i \(0.734351\pi\)
\(168\) 0 0
\(169\) −12.4311 3.80365i −0.956239 0.292588i
\(170\) −7.95407 −0.610049
\(171\) 0 0
\(172\) 13.7835 + 23.8736i 1.05098 + 1.82035i
\(173\) −1.82616 + 3.16301i −0.138841 + 0.240479i −0.927058 0.374918i \(-0.877671\pi\)
0.788217 + 0.615397i \(0.211004\pi\)
\(174\) 0 0
\(175\) 1.91827 3.32254i 0.145007 0.251160i
\(176\) −4.00000 + 6.92820i −0.301511 + 0.522233i
\(177\) 0 0
\(178\) 17.9010 31.0054i 1.34174 2.32395i
\(179\) −2.92073 5.05885i −0.218306 0.378116i 0.735985 0.676998i \(-0.236720\pi\)
−0.954290 + 0.298882i \(0.903386\pi\)
\(180\) 0 0
\(181\) 10.0874 0.749792 0.374896 0.927067i \(-0.377678\pi\)
0.374896 + 0.927067i \(0.377678\pi\)
\(182\) 4.53088 30.2933i 0.335851 2.24549i
\(183\) 0 0
\(184\) 6.23506 + 10.7994i 0.459655 + 0.796146i
\(185\) 2.37778 + 4.11844i 0.174818 + 0.302794i
\(186\) 0 0
\(187\) −20.8573 −1.52524
\(188\) 3.21432 5.56737i 0.234428 0.406042i
\(189\) 0 0
\(190\) −4.75557 −0.345005
\(191\) 7.98741 13.8346i 0.577948 1.00104i −0.417766 0.908555i \(-0.637187\pi\)
0.995714 0.0924813i \(-0.0294798\pi\)
\(192\) 0 0
\(193\) 1.85159 + 3.20705i 0.133280 + 0.230849i 0.924939 0.380115i \(-0.124116\pi\)
−0.791659 + 0.610963i \(0.790782\pi\)
\(194\) −9.41282 −0.675801
\(195\) 0 0
\(196\) 22.4099 1.60071
\(197\) 8.19850 + 14.2002i 0.584119 + 1.01172i 0.994985 + 0.100028i \(0.0318931\pi\)
−0.410866 + 0.911696i \(0.634774\pi\)
\(198\) 0 0
\(199\) −2.64764 + 4.58585i −0.187686 + 0.325082i −0.944478 0.328573i \(-0.893432\pi\)
0.756792 + 0.653656i \(0.226766\pi\)
\(200\) −2.00000 −0.141421
\(201\) 0 0
\(202\) 2.47457 4.28609i 0.174110 0.301568i
\(203\) 7.92888 0.556498
\(204\) 0 0
\(205\) −5.55877 9.62806i −0.388241 0.672453i
\(206\) −2.70641 4.68764i −0.188564 0.326603i
\(207\) 0 0
\(208\) 4.62222 1.82013i 0.320493 0.126204i
\(209\) −12.4701 −0.862577
\(210\) 0 0
\(211\) −3.99532 6.92009i −0.275049 0.476399i 0.695099 0.718914i \(-0.255361\pi\)
−0.970147 + 0.242516i \(0.922027\pi\)
\(212\) −1.18421 + 2.05111i −0.0813318 + 0.140871i
\(213\) 0 0
\(214\) −1.82939 + 3.16860i −0.125055 + 0.216601i
\(215\) 4.74766 8.22318i 0.323788 0.560817i
\(216\) 0 0
\(217\) −10.1304 + 17.5463i −0.687694 + 1.19112i
\(218\) −2.89284 5.01055i −0.195928 0.339357i
\(219\) 0 0
\(220\) −16.8573 −1.13652
\(221\) 10.1350 + 8.06366i 0.681757 + 0.542420i
\(222\) 0 0
\(223\) 4.68889 + 8.12140i 0.313991 + 0.543849i 0.979223 0.202788i \(-0.0650003\pi\)
−0.665231 + 0.746637i \(0.731667\pi\)
\(224\) 13.5254 + 23.4267i 0.903706 + 1.56526i
\(225\) 0 0
\(226\) 5.37778 0.357725
\(227\) 7.20395 12.4776i 0.478143 0.828168i −0.521543 0.853225i \(-0.674643\pi\)
0.999686 + 0.0250572i \(0.00797680\pi\)
\(228\) 0 0
\(229\) −17.9541 −1.18644 −0.593219 0.805041i \(-0.702143\pi\)
−0.593219 + 0.805041i \(0.702143\pi\)
\(230\) 6.90321 11.9567i 0.455184 0.788402i
\(231\) 0 0
\(232\) −2.06668 3.57959i −0.135684 0.235012i
\(233\) −27.5210 −1.80296 −0.901480 0.432821i \(-0.857518\pi\)
−0.901480 + 0.432821i \(0.857518\pi\)
\(234\) 0 0
\(235\) −2.21432 −0.144446
\(236\) −14.4795 25.0792i −0.942535 1.63252i
\(237\) 0 0
\(238\) −15.2580 + 26.4277i −0.989031 + 1.71305i
\(239\) 19.0321 1.23109 0.615543 0.788104i \(-0.288937\pi\)
0.615543 + 0.788104i \(0.288937\pi\)
\(240\) 0 0
\(241\) −11.6407 + 20.1623i −0.749846 + 1.29877i 0.198051 + 0.980192i \(0.436539\pi\)
−0.947896 + 0.318579i \(0.896794\pi\)
\(242\) −50.2973 −3.23323
\(243\) 0 0
\(244\) −7.66593 13.2778i −0.490761 0.850022i
\(245\) −3.85950 6.68485i −0.246575 0.427080i
\(246\) 0 0
\(247\) 6.05953 + 4.82109i 0.385559 + 0.306759i
\(248\) 10.5620 0.670687
\(249\) 0 0
\(250\) 1.10716 + 1.91766i 0.0700229 + 0.121283i
\(251\) −13.3620 + 23.1436i −0.843400 + 1.46081i 0.0436042 + 0.999049i \(0.486116\pi\)
−0.887004 + 0.461762i \(0.847217\pi\)
\(252\) 0 0
\(253\) 18.1017 31.3531i 1.13804 1.97115i
\(254\) 21.3193 36.9260i 1.33769 2.31695i
\(255\) 0 0
\(256\) 3.05086 5.28424i 0.190678 0.330265i
\(257\) −5.95952 10.3222i −0.371744 0.643880i 0.618090 0.786108i \(-0.287907\pi\)
−0.989834 + 0.142227i \(0.954574\pi\)
\(258\) 0 0
\(259\) 18.2449 1.13368
\(260\) 8.19135 + 6.51721i 0.508006 + 0.404180i
\(261\) 0 0
\(262\) −14.8501 25.7212i −0.917444 1.58906i
\(263\) 7.96444 + 13.7948i 0.491108 + 0.850625i 0.999948 0.0102370i \(-0.00325858\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(264\) 0 0
\(265\) 0.815792 0.0501137
\(266\) −9.12245 + 15.8006i −0.559334 + 0.968794i
\(267\) 0 0
\(268\) −10.3225 −0.630546
\(269\) −4.79383 + 8.30316i −0.292285 + 0.506252i −0.974350 0.225039i \(-0.927749\pi\)
0.682065 + 0.731292i \(0.261082\pi\)
\(270\) 0 0
\(271\) −6.86196 11.8853i −0.416835 0.721979i 0.578785 0.815481i \(-0.303527\pi\)
−0.995619 + 0.0935019i \(0.970194\pi\)
\(272\) −4.94914 −0.300086
\(273\) 0 0
\(274\) −10.4844 −0.633387
\(275\) 2.90321 + 5.02851i 0.175070 + 0.303231i
\(276\) 0 0
\(277\) −5.90321 + 10.2247i −0.354690 + 0.614340i −0.987065 0.160322i \(-0.948747\pi\)
0.632375 + 0.774662i \(0.282080\pi\)
\(278\) 24.4494 1.46638
\(279\) 0 0
\(280\) −3.83654 + 6.64507i −0.229277 + 0.397119i
\(281\) 10.7906 0.643713 0.321857 0.946788i \(-0.395693\pi\)
0.321857 + 0.946788i \(0.395693\pi\)
\(282\) 0 0
\(283\) 15.5978 + 27.0162i 0.927192 + 1.60594i 0.787997 + 0.615680i \(0.211118\pi\)
0.139196 + 0.990265i \(0.455548\pi\)
\(284\) 8.33185 + 14.4312i 0.494404 + 0.856334i
\(285\) 0 0
\(286\) 36.2766 + 28.8624i 2.14508 + 1.70667i
\(287\) −42.6528 −2.51772
\(288\) 0 0
\(289\) 2.04839 + 3.54792i 0.120494 + 0.208701i
\(290\) −2.28814 + 3.96318i −0.134364 + 0.232726i
\(291\) 0 0
\(292\) 4.04371 7.00391i 0.236640 0.409873i
\(293\) 2.95952 5.12603i 0.172897 0.299466i −0.766535 0.642203i \(-0.778021\pi\)
0.939431 + 0.342737i \(0.111354\pi\)
\(294\) 0 0
\(295\) −4.98741 + 8.63844i −0.290378 + 0.502949i
\(296\) −4.75557 8.23689i −0.276412 0.478759i
\(297\) 0 0
\(298\) −4.42864 −0.256544
\(299\) −20.9175 + 8.23689i −1.20969 + 0.476351i
\(300\) 0 0
\(301\) −18.2146 31.5485i −1.04987 1.81843i
\(302\) 9.75557 + 16.8971i 0.561370 + 0.972321i
\(303\) 0 0
\(304\) −2.95899 −0.169710
\(305\) −2.64050 + 4.57348i −0.151194 + 0.261877i
\(306\) 0 0
\(307\) 14.5877 0.832562 0.416281 0.909236i \(-0.363333\pi\)
0.416281 + 0.909236i \(0.363333\pi\)
\(308\) −32.3368 + 56.0089i −1.84256 + 3.19141i
\(309\) 0 0
\(310\) −5.84691 10.1271i −0.332082 0.575183i
\(311\) −17.9748 −1.01926 −0.509629 0.860394i \(-0.670217\pi\)
−0.509629 + 0.860394i \(0.670217\pi\)
\(312\) 0 0
\(313\) −5.79060 −0.327304 −0.163652 0.986518i \(-0.552327\pi\)
−0.163652 + 0.986518i \(0.552327\pi\)
\(314\) −3.03334 5.25390i −0.171181 0.296495i
\(315\) 0 0
\(316\) −17.9010 + 31.0054i −1.00701 + 1.74419i
\(317\) −4.78415 −0.268705 −0.134352 0.990934i \(-0.542895\pi\)
−0.134352 + 0.990934i \(0.542895\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) −12.8573 −0.718744
\(321\) 0 0
\(322\) −26.4844 45.8724i −1.47592 2.55637i
\(323\) −3.85728 6.68100i −0.214625 0.371741i
\(324\) 0 0
\(325\) 0.533338 3.56589i 0.0295843 0.197800i
\(326\) 54.6800 3.02845
\(327\) 0 0
\(328\) 11.1175 + 19.2561i 0.613863 + 1.06324i
\(329\) −4.24766 + 7.35716i −0.234181 + 0.405613i
\(330\) 0 0
\(331\) −1.33654 + 2.31495i −0.0734626 + 0.127241i −0.900417 0.435028i \(-0.856738\pi\)
0.826954 + 0.562269i \(0.190072\pi\)
\(332\) 0.903212 1.56441i 0.0495702 0.0858581i
\(333\) 0 0
\(334\) −8.75557 + 15.1651i −0.479083 + 0.829797i
\(335\) 1.77777 + 3.07919i 0.0971299 + 0.168234i
\(336\) 0 0
\(337\) −29.0350 −1.58164 −0.790820 0.612049i \(-0.790345\pi\)
−0.790820 + 0.612049i \(0.790345\pi\)
\(338\) −6.46912 28.0498i −0.351874 1.52571i
\(339\) 0 0
\(340\) −5.21432 9.03147i −0.282786 0.489800i
\(341\) −15.3319 26.5555i −0.830266 1.43806i
\(342\) 0 0
\(343\) −2.75848 −0.148944
\(344\) −9.49532 + 16.4464i −0.511953 + 0.886729i
\(345\) 0 0
\(346\) −8.08742 −0.434782
\(347\) 14.1541 24.5156i 0.759832 1.31607i −0.183104 0.983093i \(-0.558615\pi\)
0.942936 0.332974i \(-0.108052\pi\)
\(348\) 0 0
\(349\) 16.0232 + 27.7530i 0.857702 + 1.48558i 0.874115 + 0.485719i \(0.161442\pi\)
−0.0164125 + 0.999865i \(0.505225\pi\)
\(350\) 8.49532 0.454094
\(351\) 0 0
\(352\) −40.9403 −2.18212
\(353\) −7.24443 12.5477i −0.385582 0.667848i 0.606268 0.795261i \(-0.292666\pi\)
−0.991850 + 0.127413i \(0.959333\pi\)
\(354\) 0 0
\(355\) 2.86987 4.97077i 0.152317 0.263821i
\(356\) 46.9403 2.48783
\(357\) 0 0
\(358\) 6.46743 11.2019i 0.341814 0.592039i
\(359\) 24.2701 1.28093 0.640463 0.767989i \(-0.278742\pi\)
0.640463 + 0.767989i \(0.278742\pi\)
\(360\) 0 0
\(361\) 7.19381 + 12.4601i 0.378622 + 0.655792i
\(362\) 11.1684 + 19.3442i 0.586997 + 1.01671i
\(363\) 0 0
\(364\) 37.3669 14.7143i 1.95856 0.771240i
\(365\) −2.78568 −0.145809
\(366\) 0 0
\(367\) 1.11899 + 1.93815i 0.0584107 + 0.101170i 0.893752 0.448561i \(-0.148063\pi\)
−0.835341 + 0.549732i \(0.814730\pi\)
\(368\) 4.29529 7.43965i 0.223907 0.387819i
\(369\) 0 0
\(370\) −5.26517 + 9.11955i −0.273723 + 0.474103i
\(371\) 1.56491 2.71050i 0.0812459 0.140722i
\(372\) 0 0
\(373\) −14.0565 + 24.3466i −0.727820 + 1.26062i 0.229982 + 0.973195i \(0.426133\pi\)
−0.957803 + 0.287427i \(0.907200\pi\)
\(374\) −23.0923 39.9971i −1.19408 2.06820i
\(375\) 0 0
\(376\) 4.42864 0.228390
\(377\) 6.93332 2.73020i 0.357084 0.140613i
\(378\) 0 0
\(379\) 9.80888 + 16.9895i 0.503849 + 0.872691i 0.999990 + 0.00444967i \(0.00141638\pi\)
−0.496142 + 0.868242i \(0.665250\pi\)
\(380\) −3.11753 5.39972i −0.159926 0.277000i
\(381\) 0 0
\(382\) 35.3733 1.80986
\(383\) −9.72001 + 16.8355i −0.496669 + 0.860256i −0.999993 0.00384183i \(-0.998777\pi\)
0.503323 + 0.864098i \(0.332110\pi\)
\(384\) 0 0
\(385\) 22.2766 1.13532
\(386\) −4.10001 + 7.10143i −0.208685 + 0.361453i
\(387\) 0 0
\(388\) −6.17061 10.6878i −0.313265 0.542591i
\(389\) 2.81579 0.142766 0.0713832 0.997449i \(-0.477259\pi\)
0.0713832 + 0.997449i \(0.477259\pi\)
\(390\) 0 0
\(391\) 22.3970 1.13266
\(392\) 7.71900 + 13.3697i 0.389869 + 0.675272i
\(393\) 0 0
\(394\) −18.1541 + 31.4438i −0.914590 + 1.58412i
\(395\) 12.3319 0.620483
\(396\) 0 0
\(397\) 6.33976 10.9808i 0.318184 0.551110i −0.661926 0.749570i \(-0.730261\pi\)
0.980109 + 0.198460i \(0.0635938\pi\)
\(398\) −11.7255 −0.587744
\(399\) 0 0
\(400\) 0.688892 + 1.19320i 0.0344446 + 0.0596598i
\(401\) 0.453829 + 0.786055i 0.0226631 + 0.0392537i 0.877135 0.480245i \(-0.159452\pi\)
−0.854471 + 0.519498i \(0.826119\pi\)
\(402\) 0 0
\(403\) −2.81656 + 18.8314i −0.140303 + 0.938061i
\(404\) 6.48886 0.322833
\(405\) 0 0
\(406\) 8.77854 + 15.2049i 0.435671 + 0.754605i
\(407\) −13.8064 + 23.9134i −0.684359 + 1.18534i
\(408\) 0 0
\(409\) 16.7881 29.0779i 0.830120 1.43781i −0.0678223 0.997697i \(-0.521605\pi\)
0.897942 0.440113i \(-0.145062\pi\)
\(410\) 12.3089 21.3196i 0.607892 1.05290i
\(411\) 0 0
\(412\) 3.54839 6.14600i 0.174817 0.302792i
\(413\) 19.1344 + 33.1417i 0.941540 + 1.63080i
\(414\) 0 0
\(415\) −0.622216 −0.0305434
\(416\) 19.8938 + 15.8280i 0.975376 + 0.776029i
\(417\) 0 0
\(418\) −13.8064 23.9134i −0.675294 1.16964i
\(419\) 11.4763 + 19.8775i 0.560652 + 0.971078i 0.997440 + 0.0715136i \(0.0227829\pi\)
−0.436787 + 0.899565i \(0.643884\pi\)
\(420\) 0 0
\(421\) −31.0874 −1.51511 −0.757554 0.652772i \(-0.773606\pi\)
−0.757554 + 0.652772i \(0.773606\pi\)
\(422\) 8.84691 15.3233i 0.430661 0.745926i
\(423\) 0 0
\(424\) −1.63158 −0.0792367
\(425\) −1.79605 + 3.11085i −0.0871213 + 0.150899i
\(426\) 0 0
\(427\) 10.1304 + 17.5463i 0.490243 + 0.849125i
\(428\) −4.79706 −0.231874
\(429\) 0 0
\(430\) 21.0257 1.01395
\(431\) 8.52543 + 14.7665i 0.410655 + 0.711276i 0.994962 0.100257i \(-0.0319666\pi\)
−0.584306 + 0.811533i \(0.698633\pi\)
\(432\) 0 0
\(433\) 1.29605 2.24483i 0.0622843 0.107880i −0.833202 0.552969i \(-0.813495\pi\)
0.895486 + 0.445089i \(0.146828\pi\)
\(434\) −44.8637 −2.15353
\(435\) 0 0
\(436\) 3.79283 6.56937i 0.181643 0.314616i
\(437\) 13.3907 0.640564
\(438\) 0 0
\(439\) 6.88493 + 11.9250i 0.328600 + 0.569151i 0.982234 0.187659i \(-0.0600900\pi\)
−0.653635 + 0.756810i \(0.726757\pi\)
\(440\) −5.80642 10.0570i −0.276810 0.479450i
\(441\) 0 0
\(442\) −4.24221 + 28.3633i −0.201781 + 1.34910i
\(443\) −4.71609 −0.224068 −0.112034 0.993704i \(-0.535737\pi\)
−0.112034 + 0.993704i \(0.535737\pi\)
\(444\) 0 0
\(445\) −8.08419 14.0022i −0.383228 0.663770i
\(446\) −10.3827 + 17.9834i −0.491635 + 0.851537i
\(447\) 0 0
\(448\) −24.6637 + 42.7188i −1.16525 + 2.01827i
\(449\) −5.16839 + 8.95191i −0.243911 + 0.422467i −0.961825 0.273665i \(-0.911764\pi\)
0.717914 + 0.696132i \(0.245097\pi\)
\(450\) 0 0
\(451\) 32.2766 55.9046i 1.51984 2.63245i
\(452\) 3.52543 + 6.10622i 0.165822 + 0.287212i
\(453\) 0 0
\(454\) 31.9037 1.49731
\(455\) −10.8247 8.61236i −0.507470 0.403754i
\(456\) 0 0
\(457\) 9.81433 + 16.9989i 0.459095 + 0.795176i 0.998913 0.0466054i \(-0.0148403\pi\)
−0.539818 + 0.841782i \(0.681507\pi\)
\(458\) −19.8780 34.4297i −0.928839 1.60880i
\(459\) 0 0
\(460\) 18.1017 0.843997
\(461\) 12.6003 21.8243i 0.586852 1.01646i −0.407789 0.913076i \(-0.633700\pi\)
0.994642 0.103382i \(-0.0329664\pi\)
\(462\) 0 0
\(463\) 28.8129 1.33905 0.669524 0.742790i \(-0.266498\pi\)
0.669524 + 0.742790i \(0.266498\pi\)
\(464\) −1.42372 + 2.46595i −0.0660944 + 0.114479i
\(465\) 0 0
\(466\) −30.4701 52.7758i −1.41150 2.44479i
\(467\) 32.3575 1.49733 0.748664 0.662950i \(-0.230696\pi\)
0.748664 + 0.662950i \(0.230696\pi\)
\(468\) 0 0
\(469\) 13.6410 0.629881
\(470\) −2.45161 4.24631i −0.113084 0.195867i
\(471\) 0 0
\(472\) 9.97481 17.2769i 0.459128 0.795233i
\(473\) 55.1338 2.53506
\(474\) 0 0
\(475\) −1.07382 + 1.85991i −0.0492703 + 0.0853387i
\(476\) −40.0098 −1.83385
\(477\) 0 0
\(478\) 21.0716 + 36.4971i 0.963792 + 1.66934i
\(479\) 2.96666 + 5.13841i 0.135550 + 0.234780i 0.925808 0.377995i \(-0.123386\pi\)
−0.790257 + 0.612775i \(0.790053\pi\)
\(480\) 0 0
\(481\) 15.9541 6.28239i 0.727443 0.286452i
\(482\) −51.5526 −2.34816
\(483\) 0 0
\(484\) −32.9726 57.1102i −1.49875 2.59592i
\(485\) −2.12544 + 3.68137i −0.0965114 + 0.167163i
\(486\) 0 0
\(487\) 2.42149 4.19415i 0.109728 0.190055i −0.805932 0.592008i \(-0.798335\pi\)
0.915660 + 0.401953i \(0.131669\pi\)
\(488\) 5.28100 9.14695i 0.239059 0.414063i
\(489\) 0 0
\(490\) 8.54617 14.8024i 0.386077 0.668704i
\(491\) 0.0382604 + 0.0662690i 0.00172667 + 0.00299068i 0.866887 0.498504i \(-0.166117\pi\)
−0.865161 + 0.501495i \(0.832784\pi\)
\(492\) 0 0
\(493\) −7.42372 −0.334347
\(494\) −2.53633 + 16.9578i −0.114115 + 0.762968i
\(495\) 0 0
\(496\) −3.63804 6.30127i −0.163353 0.282935i
\(497\) −11.0104 19.0705i −0.493883 0.855430i
\(498\) 0 0
\(499\) 38.0687 1.70419 0.852094 0.523388i \(-0.175332\pi\)
0.852094 + 0.523388i \(0.175332\pi\)
\(500\) −1.45161 + 2.51426i −0.0649178 + 0.112441i
\(501\) 0 0
\(502\) −59.1753 −2.64112
\(503\) 6.62714 11.4785i 0.295489 0.511803i −0.679609 0.733574i \(-0.737851\pi\)
0.975099 + 0.221772i \(0.0711839\pi\)
\(504\) 0 0
\(505\) −1.11753 1.93562i −0.0497295 0.0861340i
\(506\) 80.1659 3.56381
\(507\) 0 0
\(508\) 55.9037 2.48033
\(509\) −14.2351 24.6559i −0.630958 1.09285i −0.987356 0.158517i \(-0.949329\pi\)
0.356398 0.934334i \(-0.384005\pi\)
\(510\) 0 0
\(511\) −5.34368 + 9.25553i −0.236391 + 0.409440i
\(512\) −15.2257 −0.672887
\(513\) 0 0
\(514\) 13.1963 22.8566i 0.582063 1.00816i
\(515\) −2.44446 −0.107716
\(516\) 0 0
\(517\) −6.42864 11.1347i −0.282731 0.489705i
\(518\) 20.2000 + 34.9875i 0.887538 + 1.53726i
\(519\) 0 0
\(520\) −1.06668 + 7.13177i −0.0467769 + 0.312749i
\(521\) −17.1175 −0.749933 −0.374966 0.927038i \(-0.622346\pi\)
−0.374966 + 0.927038i \(0.622346\pi\)
\(522\) 0 0
\(523\) −0.0666765 0.115487i −0.00291556 0.00504990i 0.864564 0.502523i \(-0.167595\pi\)
−0.867480 + 0.497473i \(0.834261\pi\)
\(524\) 19.4701 33.7232i 0.850556 1.47321i
\(525\) 0 0
\(526\) −17.6358 + 30.5461i −0.768958 + 1.33187i
\(527\) 9.48494 16.4284i 0.413171 0.715633i
\(528\) 0 0
\(529\) −7.93801 + 13.7490i −0.345131 + 0.597784i
\(530\) 0.903212 + 1.56441i 0.0392330 + 0.0679536i
\(531\) 0 0
\(532\) −23.9210 −1.03711
\(533\) −37.2973 + 14.6869i −1.61553 + 0.636161i
\(534\) 0 0
\(535\) 0.826164 + 1.43096i 0.0357182 + 0.0618657i
\(536\) −3.55554 6.15837i −0.153576 0.266001i
\(537\) 0 0
\(538\) −21.2301 −0.915296
\(539\) 22.4099 38.8151i 0.965263 1.67188i
\(540\) 0 0
\(541\) −26.3876 −1.13449 −0.567246 0.823548i \(-0.691991\pi\)
−0.567246 + 0.823548i \(0.691991\pi\)
\(542\) 15.1946 26.3178i 0.652663 1.13045i
\(543\) 0 0
\(544\) −12.6637 21.9342i −0.542952 0.940420i
\(545\) −2.61285 −0.111922
\(546\) 0 0
\(547\) −0.0573086 −0.00245034 −0.00122517 0.999999i \(-0.500390\pi\)
−0.00122517 + 0.999999i \(0.500390\pi\)
\(548\) −6.87310 11.9046i −0.293604 0.508538i
\(549\) 0 0
\(550\) −6.42864 + 11.1347i −0.274118 + 0.474786i
\(551\) −4.43848 −0.189086
\(552\) 0 0
\(553\) 23.6558 40.9730i 1.00595 1.74235i
\(554\) −26.1432 −1.11072
\(555\) 0 0
\(556\) 16.0279 + 27.7611i 0.679734 + 1.17733i
\(557\) 20.5210 + 35.5434i 0.869502 + 1.50602i 0.862507 + 0.506046i \(0.168893\pi\)
0.00699538 + 0.999976i \(0.497773\pi\)
\(558\) 0 0
\(559\) −26.7908 21.3154i −1.13313 0.901543i
\(560\) 5.28592 0.223371
\(561\) 0 0
\(562\) 11.9469 + 20.6927i 0.503950 + 0.872868i
\(563\) 10.6128 18.3820i 0.447278 0.774709i −0.550930 0.834552i \(-0.685727\pi\)
0.998208 + 0.0598432i \(0.0190601\pi\)
\(564\) 0 0
\(565\) 1.21432 2.10326i 0.0510868 0.0884850i
\(566\) −34.5385 + 59.8224i −1.45176 + 2.51452i
\(567\) 0 0
\(568\) −5.73975 + 9.94153i −0.240834 + 0.417137i
\(569\) 8.18098 + 14.1699i 0.342965 + 0.594032i 0.984982 0.172658i \(-0.0552356\pi\)
−0.642017 + 0.766690i \(0.721902\pi\)
\(570\) 0 0
\(571\) −37.7101 −1.57812 −0.789060 0.614317i \(-0.789432\pi\)
−0.789060 + 0.614317i \(0.789432\pi\)
\(572\) −8.99063 + 60.1112i −0.375917 + 2.51337i
\(573\) 0 0
\(574\) −47.2235 81.7935i −1.97107 3.41399i
\(575\) −3.11753 5.39972i −0.130010 0.225184i
\(576\) 0 0
\(577\) 42.7150 1.77825 0.889125 0.457664i \(-0.151314\pi\)
0.889125 + 0.457664i \(0.151314\pi\)
\(578\) −4.53580 + 7.85623i −0.188664 + 0.326776i
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) −1.19358 + 2.06733i −0.0495179 + 0.0857675i
\(582\) 0 0
\(583\) 2.36842 + 4.10222i 0.0980898 + 0.169896i
\(584\) 5.57136 0.230545
\(585\) 0 0
\(586\) 13.1066 0.541430
\(587\) 4.81187 + 8.33441i 0.198607 + 0.343998i 0.948077 0.318041i \(-0.103025\pi\)
−0.749470 + 0.662039i \(0.769692\pi\)
\(588\) 0 0
\(589\) 5.67085 9.82220i 0.233663 0.404717i
\(590\) −22.0874 −0.909325
\(591\) 0 0
\(592\) −3.27607 + 5.67433i −0.134646 + 0.233213i
\(593\) 24.5018 1.00617 0.503084 0.864238i \(-0.332199\pi\)
0.503084 + 0.864238i \(0.332199\pi\)
\(594\) 0 0
\(595\) 6.89062 + 11.9349i 0.282488 + 0.489283i
\(596\) −2.90321 5.02851i −0.118920 0.205976i
\(597\) 0 0
\(598\) −38.9545 30.9930i −1.59297 1.26740i
\(599\) 16.9654 0.693189 0.346595 0.938015i \(-0.387338\pi\)
0.346595 + 0.938015i \(0.387338\pi\)
\(600\) 0 0
\(601\) 10.7835 + 18.6775i 0.439866 + 0.761871i 0.997679 0.0680961i \(-0.0216925\pi\)
−0.557812 + 0.829967i \(0.688359\pi\)
\(602\) 40.3329 69.8586i 1.64384 2.84722i
\(603\) 0 0
\(604\) −12.7906 + 22.1540i −0.520442 + 0.901432i
\(605\) −11.3573 + 19.6714i −0.461739 + 0.799755i
\(606\) 0 0
\(607\) 9.99285 17.3081i 0.405597 0.702515i −0.588793 0.808284i \(-0.700397\pi\)
0.994391 + 0.105768i \(0.0337301\pi\)
\(608\) −7.57136 13.1140i −0.307059 0.531842i
\(609\) 0 0
\(610\) −11.6938 −0.473469
\(611\) −1.18098 + 7.89601i −0.0477774 + 0.319439i
\(612\) 0 0
\(613\) −5.60001 9.69951i −0.226182 0.391760i 0.730491 0.682922i \(-0.239291\pi\)
−0.956674 + 0.291163i \(0.905958\pi\)
\(614\) 16.1509 + 27.9741i 0.651796 + 1.12894i
\(615\) 0 0
\(616\) −44.5531 −1.79510
\(617\) 0.295286 0.511451i 0.0118878 0.0205902i −0.860020 0.510260i \(-0.829549\pi\)
0.871908 + 0.489670i \(0.162883\pi\)
\(618\) 0 0
\(619\) −12.2573 −0.492664 −0.246332 0.969186i \(-0.579225\pi\)
−0.246332 + 0.969186i \(0.579225\pi\)
\(620\) 7.66593 13.2778i 0.307871 0.533248i
\(621\) 0 0
\(622\) −19.9010 34.4695i −0.797957 1.38210i
\(623\) −62.0306 −2.48520
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −6.41112 11.1044i −0.256240 0.443821i
\(627\) 0 0
\(628\) 3.97703 6.88842i 0.158701 0.274878i
\(629\) −17.0825 −0.681124
\(630\) 0 0
\(631\) −18.3200 + 31.7312i −0.729309 + 1.26320i 0.227867 + 0.973692i \(0.426825\pi\)
−0.957176 + 0.289507i \(0.906509\pi\)
\(632\) −24.6637 −0.981069
\(633\) 0 0
\(634\) −5.29682 9.17436i −0.210364 0.364360i
\(635\) −9.62790 16.6760i −0.382072 0.661768i
\(636\) 0 0
\(637\) −25.8959 + 10.1973i −1.02603 + 0.404030i
\(638\) −26.5718 −1.05199
\(639\) 0 0
\(640\) −7.18421 12.4434i −0.283981 0.491869i
\(641\) −10.5827 + 18.3298i −0.417993 + 0.723985i −0.995737 0.0922326i \(-0.970600\pi\)
0.577745 + 0.816218i \(0.303933\pi\)
\(642\) 0 0
\(643\) −6.09602 + 10.5586i −0.240404 + 0.416391i −0.960829 0.277141i \(-0.910613\pi\)
0.720426 + 0.693532i \(0.243946\pi\)
\(644\) 34.7239 60.1436i 1.36831 2.36999i
\(645\) 0 0
\(646\) 8.54125 14.7939i 0.336051 0.582057i
\(647\) 4.73038 + 8.19326i 0.185970 + 0.322110i 0.943903 0.330223i \(-0.107124\pi\)
−0.757933 + 0.652333i \(0.773790\pi\)
\(648\) 0 0
\(649\) −57.9180 −2.27348
\(650\) 7.42864 2.92525i 0.291375 0.114738i
\(651\) 0 0
\(652\) 35.8457 + 62.0866i 1.40383 + 2.43150i
\(653\) 10.1995 + 17.6661i 0.399137 + 0.691326i 0.993620 0.112782i \(-0.0359763\pi\)
−0.594482 + 0.804109i \(0.702643\pi\)
\(654\) 0 0
\(655\) −13.4128 −0.524082
\(656\) 7.65878 13.2654i 0.299025 0.517927i
\(657\) 0 0
\(658\) −18.8113 −0.733343
\(659\) 17.4859 30.2866i 0.681156 1.17980i −0.293473 0.955967i \(-0.594811\pi\)
0.974628 0.223829i \(-0.0718557\pi\)
\(660\) 0 0
\(661\) 9.73014 + 16.8531i 0.378459 + 0.655510i 0.990838 0.135054i \(-0.0431209\pi\)
−0.612380 + 0.790564i \(0.709788\pi\)
\(662\) −5.91903 −0.230050
\(663\) 0 0
\(664\) 1.24443 0.0482933
\(665\) 4.11975 + 7.13562i 0.159757 + 0.276708i
\(666\) 0 0
\(667\) 6.44293 11.1595i 0.249471 0.432097i
\(668\) −22.9590 −0.888310
\(669\) 0 0
\(670\) −3.93655 + 6.81830i −0.152082 + 0.263414i
\(671\) −30.6637 −1.18376
\(672\) 0 0
\(673\) −7.13259 12.3540i −0.274941 0.476212i 0.695179 0.718836i \(-0.255325\pi\)
−0.970120 + 0.242625i \(0.921992\pi\)
\(674\) −32.1464 55.6792i −1.23823 2.14468i
\(675\) 0 0
\(676\) 27.6084 25.7336i 1.06186 0.989752i
\(677\) 34.0415 1.30832 0.654160 0.756356i \(-0.273022\pi\)
0.654160 + 0.756356i \(0.273022\pi\)
\(678\) 0 0
\(679\) 8.15433 + 14.1237i 0.312935 + 0.542019i
\(680\) 3.59210 6.22171i 0.137751 0.238592i
\(681\) 0 0
\(682\) 33.9496 58.8025i 1.30000 2.25166i
\(683\) 14.6692 25.4077i 0.561300 0.972199i −0.436084 0.899906i \(-0.643635\pi\)
0.997383 0.0722933i \(-0.0230318\pi\)
\(684\) 0 0
\(685\) −2.36741 + 4.10048i −0.0904542 + 0.156671i
\(686\) −3.05408 5.28982i −0.116605 0.201966i
\(687\) 0 0
\(688\) 13.0825 0.498766
\(689\) 0.435093 2.90902i 0.0165757 0.110825i
\(690\) 0 0
\(691\) −1.59457 2.76187i −0.0606601 0.105066i 0.834101 0.551612i \(-0.185987\pi\)
−0.894761 + 0.446546i \(0.852654\pi\)
\(692\) −5.30174 9.18288i −0.201542 0.349081i
\(693\) 0 0
\(694\) 62.6834 2.37943
\(695\) 5.52074 9.56221i 0.209414 0.362715i
\(696\) 0 0
\(697\) 39.9353 1.51266
\(698\) −35.4805 + 61.4540i −1.34296 + 2.32607i
\(699\) 0 0
\(700\) 5.56914 + 9.64603i 0.210494 + 0.364586i
\(701\) −2.44738 −0.0924361 −0.0462180 0.998931i \(-0.514717\pi\)
−0.0462180 + 0.998931i \(0.514717\pi\)
\(702\) 0 0
\(703\) −10.2133 −0.385201
\(704\) −37.3274 64.6530i −1.40683 2.43670i
\(705\) 0 0
\(706\) 16.0415 27.7847i 0.603729 1.04569i
\(707\) −8.57490 −0.322492
\(708\) 0 0
\(709\) 0.301502 0.522216i 0.0113231 0.0196122i −0.860308 0.509774i \(-0.829729\pi\)
0.871631 + 0.490162i \(0.163062\pi\)
\(710\) 12.7096 0.476984
\(711\) 0 0
\(712\) 16.1684 + 28.0045i 0.605936 + 1.04951i
\(713\) 16.4637 + 28.5159i 0.616569 + 1.06793i
\(714\) 0 0
\(715\) 19.4795 7.67063i 0.728492 0.286865i
\(716\) 16.9590 0.633787
\(717\) 0 0
\(718\) 26.8709 + 46.5417i 1.00281 + 1.73692i
\(719\) 21.7988 37.7565i 0.812956 1.40808i −0.0978299 0.995203i \(-0.531190\pi\)
0.910786 0.412878i \(-0.135477\pi\)
\(720\) 0 0
\(721\) −4.68913 + 8.12181i −0.174632 + 0.302472i
\(722\) −15.9294 + 27.5905i −0.592831 + 1.02681i
\(723\) 0 0
\(724\) −14.6430 + 25.3623i −0.544201 + 0.942584i
\(725\) 1.03334 + 1.78979i 0.0383772 + 0.0664713i
\(726\) 0 0
\(727\) 32.8642 1.21887 0.609433 0.792838i \(-0.291397\pi\)
0.609433 + 0.792838i \(0.291397\pi\)
\(728\) 21.6494 + 17.2247i 0.802381 + 0.638391i
\(729\) 0 0
\(730\) −3.08419 5.34198i −0.114151 0.197716i
\(731\) 17.0541 + 29.5385i 0.630768 + 1.09252i
\(732\) 0 0
\(733\) 17.4035 0.642811 0.321406 0.946942i \(-0.395845\pi\)
0.321406 + 0.946942i \(0.395845\pi\)
\(734\) −2.47780 + 4.29167i −0.0914572 + 0.158409i
\(735\) 0 0
\(736\) 43.9625 1.62048
\(737\) −10.3225 + 17.8791i −0.380234 + 0.658584i
\(738\) 0 0
\(739\) −21.2924 36.8795i −0.783253 1.35663i −0.930037 0.367465i \(-0.880226\pi\)
0.146785 0.989168i \(-0.453107\pi\)
\(740\) −13.8064 −0.507534
\(741\) 0 0
\(742\) 6.93041 0.254423
\(743\) −16.4232 28.4458i −0.602508 1.04358i −0.992440 0.122731i \(-0.960835\pi\)
0.389932 0.920844i \(-0.372499\pi\)
\(744\) 0 0
\(745\) −1.00000 + 1.73205i −0.0366372 + 0.0634574i
\(746\) −62.2514 −2.27918
\(747\) 0 0
\(748\) 30.2766 52.4405i 1.10702 1.91742i
\(749\) 6.33921 0.231630
\(750\) 0 0
\(751\) −6.23729 10.8033i −0.227602 0.394218i 0.729495 0.683986i \(-0.239755\pi\)
−0.957097 + 0.289768i \(0.906422\pi\)
\(752\) −1.52543 2.64212i −0.0556266 0.0963481i
\(753\) 0 0
\(754\) 12.9119 + 10.2730i 0.470223 + 0.374119i
\(755\) 8.81135 0.320678
\(756\) 0 0
\(757\) 2.43732 + 4.22155i 0.0885858 + 0.153435i 0.906914 0.421317i \(-0.138432\pi\)
−0.818328 + 0.574752i \(0.805099\pi\)
\(758\) −21.7200 + 37.6202i −0.788906 + 1.36643i
\(759\) 0 0
\(760\) 2.14764 3.71983i 0.0779032 0.134932i
\(761\) −2.05086 + 3.55219i −0.0743434 + 0.128767i −0.900801 0.434233i \(-0.857019\pi\)
0.826457 + 0.563000i \(0.190353\pi\)
\(762\) 0 0
\(763\) −5.01214 + 8.68128i −0.181452 + 0.314284i
\(764\) 23.1891 + 40.1648i 0.838953 + 1.45311i
\(765\) 0 0
\(766\) −43.0464 −1.55533
\(767\) 28.1437 + 22.3917i 1.01621 + 0.808519i
\(768\) 0 0
\(769\) 24.0486 + 41.6535i 0.867216 + 1.50206i 0.864830 + 0.502065i \(0.167426\pi\)
0.00238584 + 0.999997i \(0.499241\pi\)
\(770\) 24.6637 + 42.7188i 0.888818 + 1.53948i
\(771\) 0 0
\(772\) −10.7511 −0.386941
\(773\) 9.09679 15.7561i 0.327189 0.566707i −0.654764 0.755833i \(-0.727232\pi\)
0.981953 + 0.189126i \(0.0605654\pi\)
\(774\) 0 0
\(775\) −5.28100 −0.189699
\(776\) 4.25088 7.36275i 0.152598 0.264307i
\(777\) 0 0
\(778\) 3.11753 + 5.39972i 0.111769 + 0.193589i
\(779\) 23.8765 0.855464
\(780\) 0 0
\(781\) 33.3274 1.19255
\(782\) 24.7971 + 42.9498i 0.886741 + 1.53588i
\(783\) 0 0
\(784\) 5.31756 9.21029i 0.189913 0.328939i
\(785\) −2.73975 −0.0977858
\(786\) 0 0
\(787\) 14.6486 25.3722i 0.522168 0.904421i −0.477500 0.878632i \(-0.658457\pi\)
0.999667 0.0257893i \(-0.00820989\pi\)
\(788\) −47.6040 −1.69582
\(789\) 0 0
\(790\) 13.6533 + 23.6483i 0.485764 + 0.841367i
\(791\) −4.65878 8.06924i −0.165647 0.286909i
\(792\) 0 0
\(793\) 14.9002 + 11.8549i 0.529122 + 0.420981i
\(794\) 28.0765 0.996398
\(795\) 0 0
\(796\) −7.68667 13.3137i −0.272447 0.471892i
\(797\) 13.4390 23.2771i 0.476034 0.824515i −0.523589 0.851971i \(-0.675407\pi\)
0.999623 + 0.0274557i \(0.00874051\pi\)
\(798\) 0 0
\(799\) 3.97703 6.88842i 0.140697 0.243695i
\(800\) −3.52543 + 6.10622i −0.124643 + 0.215887i
\(801\) 0 0
\(802\) −1.00492 + 1.74058i −0.0354850 + 0.0614619i
\(803\) −8.08742 14.0078i −0.285399 0.494325i
\(804\) 0 0
\(805\) −23.9210 −0.843106
\(806\) −39.2306 + 15.4482i −1.38184 + 0.544140i
\(807\) 0 0
\(808\) 2.23506 + 3.87124i 0.0786293 + 0.136190i
\(809\) −14.2286 24.6447i −0.500251 0.866461i −1.00000 0.000290180i \(-0.999908\pi\)
0.499749 0.866170i \(-0.333426\pi\)
\(810\) 0 0
\(811\) −16.6316 −0.584014 −0.292007 0.956416i \(-0.594323\pi\)
−0.292007 + 0.956416i \(0.594323\pi\)
\(812\) −11.5096 + 19.9352i −0.403908 + 0.699589i
\(813\) 0 0
\(814\) −61.1437 −2.14308
\(815\) 12.3469 21.3855i 0.432493 0.749100i
\(816\) 0 0
\(817\) 10.1963 + 17.6605i 0.356723 + 0.617862i
\(818\) 74.3486 2.59954
\(819\) 0 0
\(820\) 32.2766 1.12715
\(821\) −17.4844 30.2839i −0.610210 1.05692i −0.991205 0.132338i \(-0.957752\pi\)
0.380994 0.924577i \(-0.375582\pi\)
\(822\) 0 0
\(823\) −9.33185 + 16.1632i −0.325288 + 0.563415i −0.981571 0.191100i \(-0.938795\pi\)
0.656283 + 0.754515i \(0.272128\pi\)
\(824\) 4.88892 0.170314
\(825\) 0 0
\(826\) −42.3696 + 73.3863i −1.47423 + 2.55344i
\(827\) −21.2968 −0.740563 −0.370281 0.928920i \(-0.620739\pi\)
−0.370281 + 0.928920i \(0.620739\pi\)
\(828\) 0 0
\(829\) 3.59610 + 6.22862i 0.124898 + 0.216329i 0.921693 0.387920i \(-0.126806\pi\)
−0.796795 + 0.604249i \(0.793473\pi\)
\(830\) −0.688892 1.19320i −0.0239118 0.0414164i
\(831\) 0 0
\(832\) −6.85728 + 45.8476i −0.237733 + 1.58948i
\(833\) 27.7275 0.960700
\(834\) 0 0
\(835\) 3.95407 + 6.84865i 0.136836 + 0.237007i
\(836\) 18.1017 31.3531i 0.626061 1.08437i
\(837\) 0 0
\(838\) −25.4121 + 44.0151i −0.877847 + 1.52048i
\(839\) −0.790602 + 1.36936i −0.0272946 + 0.0472757i −0.879350 0.476176i \(-0.842023\pi\)
0.852055 + 0.523452i \(0.175356\pi\)
\(840\) 0 0
\(841\) 12.3644 21.4158i 0.426359 0.738476i
\(842\) −34.4187 59.6150i −1.18615 2.05447i
\(843\) 0 0
\(844\) 23.1985 0.798525
\(845\) −12.4311 3.80365i −0.427643 0.130849i
\(846\) 0 0
\(847\) 43.5726 + 75.4700i 1.49717 + 2.59318i
\(848\) 0.561993 + 0.973400i 0.0192989 + 0.0334267i
\(849\) 0 0
\(850\) −7.95407 −0.272822
\(851\) 14.8256 25.6788i 0.508216 0.880256i
\(852\) 0 0
\(853\) −23.0207 −0.788215 −0.394108 0.919064i \(-0.628946\pi\)
−0.394108 + 0.919064i \(0.628946\pi\)
\(854\) −22.4319 + 38.8531i −0.767603 + 1.32953i
\(855\) 0 0
\(856\) −1.65233 2.86191i −0.0564754 0.0978182i
\(857\) −47.4499 −1.62086 −0.810428 0.585838i \(-0.800765\pi\)
−0.810428 + 0.585838i \(0.800765\pi\)
\(858\) 0 0
\(859\) −49.0241 −1.67268 −0.836341 0.548210i \(-0.815310\pi\)
−0.836341 + 0.548210i \(0.815310\pi\)
\(860\) 13.7835 + 23.8736i 0.470012 + 0.814085i
\(861\) 0 0
\(862\) −18.8780 + 32.6977i −0.642988 + 1.11369i
\(863\) 37.3590 1.27172 0.635858 0.771806i \(-0.280646\pi\)
0.635858 + 0.771806i \(0.280646\pi\)
\(864\) 0 0
\(865\) −1.82616 + 3.16301i −0.0620914 + 0.107546i
\(866\) 5.73975 0.195045
\(867\) 0 0
\(868\) −29.4106 50.9406i −0.998261 1.72904i
\(869\) 35.8020 + 62.0108i 1.21450 + 2.10357i
\(870\) 0 0
\(871\) 11.9282 4.69708i 0.404171 0.159154i
\(872\) 5.22570 0.176964
\(873\) 0 0
\(874\) 14.8256 + 25.6788i 0.501485 + 0.868597i
\(875\) 1.91827 3.32254i 0.0648493 0.112322i
\(876\) 0 0
\(877\) −10.3985 + 18.0108i −0.351133 + 0.608181i −0.986448 0.164072i \(-0.947537\pi\)
0.635315 + 0.772253i \(0.280870\pi\)
\(878\) −15.2454 + 26.4059i −0.514509 + 0.891155i
\(879\) 0 0
\(880\) −4.00000 + 6.92820i −0.134840 + 0.233550i
\(881\) 14.8780 + 25.7695i 0.501253 + 0.868196i 0.999999 + 0.00144781i \(0.000460852\pi\)
−0.498746 + 0.866748i \(0.666206\pi\)
\(882\) 0 0
\(883\) −40.5975 −1.36621 −0.683107 0.730318i \(-0.739372\pi\)
−0.683107 + 0.730318i \(0.739372\pi\)
\(884\) −34.9862 + 13.7768i −1.17671 + 0.463366i
\(885\) 0 0
\(886\) −5.22146 9.04384i −0.175419 0.303834i
\(887\) 24.2153 + 41.9422i 0.813071 + 1.40828i 0.910705 + 0.413058i \(0.135539\pi\)
−0.0976338 + 0.995222i \(0.531127\pi\)
\(888\) 0 0
\(889\) −73.8756 −2.47771
\(890\) 17.9010 31.0054i 0.600043 1.03930i
\(891\) 0 0
\(892\) −27.2257 −0.911584
\(893\) 2.37778 4.11844i 0.0795695 0.137818i
\(894\) 0 0
\(895\) −2.92073 5.05885i −0.0976292 0.169099i
\(896\) −55.1249 −1.84159
\(897\) 0 0
\(898\) −22.8889 −0.763813
\(899\) −5.45706 9.45190i −0.182003 0.315238i
\(900\) 0 0
\(901\) −1.46520 + 2.53781i −0.0488130 + 0.0845467i
\(902\) 142.941 4.75942
\(903\) 0 0
\(904\) −2.42864 + 4.20653i −0.0807753 + 0.139907i
\(905\) 10.0874 0.335317
\(906\) 0 0
\(907\) 5.14987 + 8.91983i 0.170998 + 0.296178i 0.938769 0.344547i \(-0.111967\pi\)
−0.767771 + 0.640725i \(0.778634\pi\)
\(908\) 20.9146 + 36.2251i 0.694075 + 1.20217i
\(909\) 0 0
\(910\) 4.53088 30.2933i 0.150197 1.00421i
\(911\) −7.35905 −0.243816 −0.121908 0.992541i \(-0.538901\pi\)
−0.121908 + 0.992541i \(0.538901\pi\)
\(912\) 0 0
\(913\) −1.80642 3.12882i −0.0597839 0.103549i
\(914\) −21.7321 + 37.6411i −0.718833 + 1.24506i
\(915\) 0 0
\(916\) 26.0622 45.1411i 0.861120 1.49150i
\(917\) −25.7294 + 44.5646i −0.849659 + 1.47165i
\(918\) 0 0
\(919\) −0.391383 + 0.677895i −0.0129105 + 0.0223617i −0.872408 0.488777i \(-0.837443\pi\)
0.859498 + 0.511139i \(0.170776\pi\)
\(920\) 6.23506 + 10.7994i 0.205564 + 0.356047i
\(921\) 0 0
\(922\) 55.8020 1.83774
\(923\) −16.1946 12.8847i −0.533051 0.424107i
\(924\) 0 0
\(925\) 2.37778 + 4.11844i 0.0781811 + 0.135414i
\(926\) 31.9005 + 55.2532i 1.04831 + 1.81573i
\(927\) 0 0
\(928\) −14.5718 −0.478344
\(929\) −14.2208 + 24.6311i −0.466568 + 0.808120i −0.999271 0.0381824i \(-0.987843\pi\)
0.532702 + 0.846303i \(0.321177\pi\)
\(930\) 0 0
\(931\) 16.5777 0.543311
\(932\) 39.9496 69.1948i 1.30859 2.26655i
\(933\) 0 0
\(934\) 35.8249 + 62.0506i 1.17223 + 2.03036i
\(935\) −20.8573 −0.682106
\(936\) 0 0
\(937\) −21.3747 −0.698282 −0.349141 0.937070i \(-0.613527\pi\)
−0.349141 + 0.937070i \(0.613527\pi\)
\(938\) 15.1027 + 26.1587i 0.493121 + 0.854111i
\(939\) 0 0
\(940\) 3.21432 5.56737i 0.104840 0.181587i
\(941\) 38.2830 1.24799 0.623995 0.781428i \(-0.285508\pi\)
0.623995 + 0.781428i \(0.285508\pi\)
\(942\) 0 0
\(943\) −34.6593 + 60.0316i −1.12866 + 1.95490i
\(944\) −13.7431 −0.447301
\(945\) 0 0
\(946\) 61.0420 + 105.728i 1.98465 + 3.43751i
\(947\) 3.80251 + 6.58613i 0.123565 + 0.214021i 0.921171 0.389158i \(-0.127234\pi\)
−0.797606 + 0.603179i \(0.793901\pi\)
\(948\) 0 0
\(949\) −1.48571 + 9.93342i −0.0482282 + 0.322452i
\(950\) −4.75557 −0.154291
\(951\) 0 0
\(952\) −13.7812 23.8698i −0.446652 0.773625i
\(953\) −16.6780 + 28.8871i −0.540253 + 0.935746i 0.458636 + 0.888624i \(0.348338\pi\)
−0.998889 + 0.0471217i \(0.984995\pi\)
\(954\) 0 0
\(955\) 7.98741 13.8346i 0.258466 0.447677i
\(956\) −27.6271 + 47.8516i −0.893525 + 1.54763i
\(957\) 0 0
\(958\) −6.56914 + 11.3781i −0.212239 + 0.367609i
\(959\) 9.08266 + 15.7316i 0.293294 + 0.508001i
\(960\) 0 0
\(961\) −3.11108 −0.100357
\(962\) 29.7112 + 23.6388i 0.957926 + 0.762146i
\(963\) 0 0
\(964\) −33.7955 58.5356i −1.08848 1.88530i
\(965\) 1.85159 + 3.20705i 0.0596048 + 0.103239i
\(966\) 0 0
\(967\) −40.8988 −1.31522 −0.657608 0.753360i \(-0.728432\pi\)
−0.657608 + 0.753360i \(0.728432\pi\)
\(968\) 22.7146 39.3428i 0.730074 1.26452i
\(969\) 0 0
\(970\) −9.41282 −0.302227
\(971\) −2.11753 + 3.66767i −0.0679548 + 0.117701i −0.898001 0.439994i \(-0.854981\pi\)
0.830046 + 0.557695i \(0.188314\pi\)
\(972\) 0 0
\(973\) −21.1805 36.6858i −0.679017 1.17609i
\(974\) 10.7239 0.343617
\(975\) 0 0
\(976\) −7.27607 −0.232901
\(977\) −19.3941 33.5915i −0.620472 1.07469i −0.989398 0.145230i \(-0.953608\pi\)
0.368926 0.929459i \(-0.379725\pi\)
\(978\) 0 0
\(979\) 46.9403 81.3029i 1.50022 2.59845i
\(980\) 22.4099 0.715858
\(981\) 0 0
\(982\) −0.0847209 + 0.146741i −0.00270355 + 0.00468269i
\(983\) −21.4479 −0.684080 −0.342040 0.939685i \(-0.611118\pi\)
−0.342040 + 0.939685i \(0.611118\pi\)
\(984\) 0 0
\(985\) 8.19850 + 14.2002i 0.261226 + 0.452456i
\(986\) −8.21924 14.2361i −0.261754 0.453371i
\(987\) 0 0
\(988\) −20.9175 + 8.23689i −0.665474 + 0.262050i
\(989\) −59.2039 −1.88257
\(990\) 0 0
\(991\) 5.65010 + 9.78627i 0.179481 + 0.310871i 0.941703 0.336445i \(-0.109225\pi\)
−0.762222 + 0.647316i \(0.775891\pi\)
\(992\) 18.6178 32.2469i 0.591115 1.02384i
\(993\) 0 0
\(994\) 24.3805 42.2282i 0.773302 1.33940i
\(995\) −2.64764 + 4.58585i −0.0839359 + 0.145381i
\(996\) 0 0
\(997\) 27.1123 46.9599i 0.858656 1.48724i −0.0145557 0.999894i \(-0.504633\pi\)
0.873212 0.487341i \(-0.162033\pi\)
\(998\) 42.1481 + 73.0027i 1.33418 + 2.31086i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.j.g.406.3 6
3.2 odd 2 195.2.i.e.16.1 6
13.3 even 3 7605.2.a.bu.1.1 3
13.9 even 3 inner 585.2.j.g.451.3 6
13.10 even 6 7605.2.a.bt.1.3 3
15.2 even 4 975.2.bb.j.874.6 12
15.8 even 4 975.2.bb.j.874.1 12
15.14 odd 2 975.2.i.m.601.3 6
39.23 odd 6 2535.2.a.z.1.1 3
39.29 odd 6 2535.2.a.y.1.3 3
39.35 odd 6 195.2.i.e.61.1 yes 6
195.74 odd 6 975.2.i.m.451.3 6
195.113 even 12 975.2.bb.j.724.6 12
195.152 even 12 975.2.bb.j.724.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.i.e.16.1 6 3.2 odd 2
195.2.i.e.61.1 yes 6 39.35 odd 6
585.2.j.g.406.3 6 1.1 even 1 trivial
585.2.j.g.451.3 6 13.9 even 3 inner
975.2.i.m.451.3 6 195.74 odd 6
975.2.i.m.601.3 6 15.14 odd 2
975.2.bb.j.724.1 12 195.152 even 12
975.2.bb.j.724.6 12 195.113 even 12
975.2.bb.j.874.1 12 15.8 even 4
975.2.bb.j.874.6 12 15.2 even 4
2535.2.a.y.1.3 3 39.29 odd 6
2535.2.a.z.1.1 3 39.23 odd 6
7605.2.a.bt.1.3 3 13.10 even 6
7605.2.a.bu.1.1 3 13.3 even 3