Properties

Label 585.2.r
Level $585$
Weight $2$
Character orbit 585.r
Rep. character $\chi_{585}(161,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $32$
Newform subspaces $3$
Sturm bound $168$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(168\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 184 32 152
Cusp forms 152 32 120
Eisenstein series 32 0 32

Trace form

\( 32 q + 16 q^{7} + 16 q^{16} + 16 q^{19} + 32 q^{34} - 48 q^{37} + 80 q^{46} - 80 q^{52} - 16 q^{55} + 96 q^{58} - 16 q^{61} + 64 q^{73} - 96 q^{76} + 16 q^{79} - 80 q^{91} - 32 q^{94} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.r.a 585.r 39.f $8$ $4.671$ \(\Q(\zeta_{24})\) None 585.2.r.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{2} q^{2}+\beta_{3} q^{4}+\beta_1 q^{5}+(-\beta_{6}-\beta_{4}-\beta_{3}-1)q^{7}+\cdots\)
585.2.r.b 585.r 39.f $8$ $4.671$ 8.0.959512576.1 None 585.2.r.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-2\beta _{2}q^{4}+\beta _{5}q^{5}+(1+\beta _{2}+\beta _{4})q^{7}+\cdots\)
585.2.r.c 585.r 39.f $16$ $4.671$ 16.0.\(\cdots\).7 None 585.2.r.c \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{4}-\beta _{6}-\beta _{10})q^{2}+(-\beta _{1}+\beta _{15})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)