Defining parameters
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.r (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 32 | 152 |
Cusp forms | 152 | 32 | 120 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
585.2.r.a | $8$ | $4.671$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta_{2} q^{2}+\beta_{3} q^{4}+\beta_1 q^{5}+(-\beta_{6}-\beta_{4}-\beta_{3}-1)q^{7}+\cdots\) |
585.2.r.b | $8$ | $4.671$ | 8.0.959512576.1 | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q-2\beta _{2}q^{4}+\beta _{5}q^{5}+(1+\beta _{2}+\beta _{4})q^{7}+\cdots\) |
585.2.r.c | $16$ | $4.671$ | 16.0.\(\cdots\).7 | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q+(-\beta _{4}-\beta _{6}-\beta _{10})q^{2}+(-\beta _{1}+\beta _{15})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)