Properties

Label 588.4.o
Level $588$
Weight $4$
Character orbit 588.o
Rep. character $\chi_{588}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $240$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(588, [\chi])\).

Total New Old
Modular forms 704 240 464
Cusp forms 640 240 400
Eisenstein series 64 0 64

Trace form

\( 240 q + 4 q^{2} + 20 q^{4} + 220 q^{8} - 1080 q^{9} - 18 q^{10} - 116 q^{16} + 36 q^{18} + 196 q^{22} + 270 q^{24} + 2916 q^{25} + 750 q^{26} - 1600 q^{29} + 168 q^{30} - 286 q^{32} + 36 q^{33} - 360 q^{36}+ \cdots - 3870 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)