Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(448\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(588, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 704 | 240 | 464 |
Cusp forms | 640 | 240 | 400 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)