Properties

Label 588.6
Level 588
Weight 6
Dimension 19652
Nonzero newspaces 16
Sturm bound 112896
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(112896\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(588))\).

Total New Old
Modular forms 47640 19848 27792
Cusp forms 46440 19652 26788
Eisenstein series 1200 196 1004

Trace form

\( 19652 q - 18 q^{3} - 22 q^{4} - 132 q^{5} + 15 q^{6} - 232 q^{7} + 1068 q^{8} - 1032 q^{9} - 3506 q^{10} + 1068 q^{11} + 2559 q^{12} + 1496 q^{13} + 3720 q^{14} - 1836 q^{15} - 2254 q^{16} - 6504 q^{17}+ \cdots - 855420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(588))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
588.6.a \(\chi_{588}(1, \cdot)\) 588.6.a.a 1 1
588.6.a.b 1
588.6.a.c 1
588.6.a.d 1
588.6.a.e 1
588.6.a.f 1
588.6.a.g 2
588.6.a.h 2
588.6.a.i 2
588.6.a.j 2
588.6.a.k 2
588.6.a.l 2
588.6.a.m 4
588.6.a.n 4
588.6.a.o 4
588.6.a.p 4
588.6.b \(\chi_{588}(391, \cdot)\) n/a 200 1
588.6.e \(\chi_{588}(491, \cdot)\) n/a 400 1
588.6.f \(\chi_{588}(293, \cdot)\) 588.6.f.a 2 1
588.6.f.b 24
588.6.f.c 40
588.6.i \(\chi_{588}(361, \cdot)\) 588.6.i.a 2 2
588.6.i.b 2
588.6.i.c 2
588.6.i.d 2
588.6.i.e 2
588.6.i.f 2
588.6.i.g 2
588.6.i.h 4
588.6.i.i 4
588.6.i.j 4
588.6.i.k 4
588.6.i.l 4
588.6.i.m 4
588.6.i.n 4
588.6.i.o 8
588.6.i.p 8
588.6.i.q 8
588.6.k \(\chi_{588}(509, \cdot)\) n/a 134 2
588.6.n \(\chi_{588}(263, \cdot)\) n/a 784 2
588.6.o \(\chi_{588}(19, \cdot)\) n/a 400 2
588.6.q \(\chi_{588}(85, \cdot)\) n/a 276 6
588.6.t \(\chi_{588}(41, \cdot)\) n/a 564 6
588.6.u \(\chi_{588}(71, \cdot)\) n/a 3336 6
588.6.x \(\chi_{588}(55, \cdot)\) n/a 1680 6
588.6.y \(\chi_{588}(25, \cdot)\) n/a 564 12
588.6.ba \(\chi_{588}(103, \cdot)\) n/a 3360 12
588.6.bb \(\chi_{588}(11, \cdot)\) n/a 6672 12
588.6.be \(\chi_{588}(5, \cdot)\) n/a 1116 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(588))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(588)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(294))\)\(^{\oplus 2}\)