Properties

Label 588.6
Level 588
Weight 6
Dimension 19652
Nonzero newspaces 16
Sturm bound 112896
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 588=22372 588 = 2^{2} \cdot 3 \cdot 7^{2}
Weight: k k = 6 6
Nonzero newspaces: 16 16
Sturm bound: 112896112896
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(588))M_{6}(\Gamma_1(588)).

Total New Old
Modular forms 47640 19848 27792
Cusp forms 46440 19652 26788
Eisenstein series 1200 196 1004

Trace form

19652q18q322q4132q5+15q6232q7+1068q81032q93506q10+1068q11+2559q12+1496q13+3720q141836q152254q166504q17+855420q99+O(q100) 19652 q - 18 q^{3} - 22 q^{4} - 132 q^{5} + 15 q^{6} - 232 q^{7} + 1068 q^{8} - 1032 q^{9} - 3506 q^{10} + 1068 q^{11} + 2559 q^{12} + 1496 q^{13} + 3720 q^{14} - 1836 q^{15} - 2254 q^{16} - 6504 q^{17}+ \cdots - 855420 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(588))S_{6}^{\mathrm{new}}(\Gamma_1(588))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
588.6.a χ588(1,)\chi_{588}(1, \cdot) 588.6.a.a 1 1
588.6.a.b 1
588.6.a.c 1
588.6.a.d 1
588.6.a.e 1
588.6.a.f 1
588.6.a.g 2
588.6.a.h 2
588.6.a.i 2
588.6.a.j 2
588.6.a.k 2
588.6.a.l 2
588.6.a.m 4
588.6.a.n 4
588.6.a.o 4
588.6.a.p 4
588.6.b χ588(391,)\chi_{588}(391, \cdot) n/a 200 1
588.6.e χ588(491,)\chi_{588}(491, \cdot) n/a 400 1
588.6.f χ588(293,)\chi_{588}(293, \cdot) 588.6.f.a 2 1
588.6.f.b 24
588.6.f.c 40
588.6.i χ588(361,)\chi_{588}(361, \cdot) 588.6.i.a 2 2
588.6.i.b 2
588.6.i.c 2
588.6.i.d 2
588.6.i.e 2
588.6.i.f 2
588.6.i.g 2
588.6.i.h 4
588.6.i.i 4
588.6.i.j 4
588.6.i.k 4
588.6.i.l 4
588.6.i.m 4
588.6.i.n 4
588.6.i.o 8
588.6.i.p 8
588.6.i.q 8
588.6.k χ588(509,)\chi_{588}(509, \cdot) n/a 134 2
588.6.n χ588(263,)\chi_{588}(263, \cdot) n/a 784 2
588.6.o χ588(19,)\chi_{588}(19, \cdot) n/a 400 2
588.6.q χ588(85,)\chi_{588}(85, \cdot) n/a 276 6
588.6.t χ588(41,)\chi_{588}(41, \cdot) n/a 564 6
588.6.u χ588(71,)\chi_{588}(71, \cdot) n/a 3336 6
588.6.x χ588(55,)\chi_{588}(55, \cdot) n/a 1680 6
588.6.y χ588(25,)\chi_{588}(25, \cdot) n/a 564 12
588.6.ba χ588(103,)\chi_{588}(103, \cdot) n/a 3360 12
588.6.bb χ588(11,)\chi_{588}(11, \cdot) n/a 6672 12
588.6.be χ588(5,)\chi_{588}(5, \cdot) n/a 1116 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S6old(Γ1(588))S_{6}^{\mathrm{old}}(\Gamma_1(588)) into lower level spaces

S6old(Γ1(588)) S_{6}^{\mathrm{old}}(\Gamma_1(588)) \cong S6new(Γ1(1))S_{6}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS6new(Γ1(2))S_{6}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS6new(Γ1(3))S_{6}^{\mathrm{new}}(\Gamma_1(3))9^{\oplus 9}\oplusS6new(Γ1(4))S_{6}^{\mathrm{new}}(\Gamma_1(4))6^{\oplus 6}\oplusS6new(Γ1(6))S_{6}^{\mathrm{new}}(\Gamma_1(6))6^{\oplus 6}\oplusS6new(Γ1(7))S_{6}^{\mathrm{new}}(\Gamma_1(7))12^{\oplus 12}\oplusS6new(Γ1(12))S_{6}^{\mathrm{new}}(\Gamma_1(12))3^{\oplus 3}\oplusS6new(Γ1(14))S_{6}^{\mathrm{new}}(\Gamma_1(14))8^{\oplus 8}\oplusS6new(Γ1(21))S_{6}^{\mathrm{new}}(\Gamma_1(21))6^{\oplus 6}\oplusS6new(Γ1(28))S_{6}^{\mathrm{new}}(\Gamma_1(28))4^{\oplus 4}\oplusS6new(Γ1(42))S_{6}^{\mathrm{new}}(\Gamma_1(42))4^{\oplus 4}\oplusS6new(Γ1(49))S_{6}^{\mathrm{new}}(\Gamma_1(49))6^{\oplus 6}\oplusS6new(Γ1(84))S_{6}^{\mathrm{new}}(\Gamma_1(84))2^{\oplus 2}\oplusS6new(Γ1(98))S_{6}^{\mathrm{new}}(\Gamma_1(98))4^{\oplus 4}\oplusS6new(Γ1(147))S_{6}^{\mathrm{new}}(\Gamma_1(147))3^{\oplus 3}\oplusS6new(Γ1(196))S_{6}^{\mathrm{new}}(\Gamma_1(196))2^{\oplus 2}\oplusS6new(Γ1(294))S_{6}^{\mathrm{new}}(\Gamma_1(294))2^{\oplus 2}