Properties

Label 588.8
Level 588
Weight 8
Dimension 27554
Nonzero newspaces 16
Sturm bound 150528
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(150528\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(588))\).

Total New Old
Modular forms 66456 27750 38706
Cusp forms 65256 27554 37702
Eisenstein series 1200 196 1004

Trace form

\( 27554 q + 54 q^{3} - 6 q^{4} - 120 q^{5} - 225 q^{6} + 664 q^{7} - 3444 q^{8} - 3438 q^{9} + 37614 q^{10} + 33132 q^{11} - 26913 q^{12} - 75228 q^{13} - 39288 q^{14} + 28332 q^{15} + 176562 q^{16} + 65148 q^{17}+ \cdots + 61750020 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(588))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
588.8.a \(\chi_{588}(1, \cdot)\) 588.8.a.a 1 1
588.8.a.b 1
588.8.a.c 1
588.8.a.d 1
588.8.a.e 2
588.8.a.f 2
588.8.a.g 3
588.8.a.h 3
588.8.a.i 4
588.8.a.j 4
588.8.a.k 5
588.8.a.l 5
588.8.a.m 8
588.8.a.n 8
588.8.b \(\chi_{588}(391, \cdot)\) n/a 280 1
588.8.e \(\chi_{588}(491, \cdot)\) n/a 564 1
588.8.f \(\chi_{588}(293, \cdot)\) 588.8.f.a 2 1
588.8.f.b 36
588.8.f.c 56
588.8.i \(\chi_{588}(361, \cdot)\) 588.8.i.a 2 2
588.8.i.b 2
588.8.i.c 2
588.8.i.d 2
588.8.i.e 2
588.8.i.f 2
588.8.i.g 2
588.8.i.h 2
588.8.i.i 4
588.8.i.j 4
588.8.i.k 4
588.8.i.l 4
588.8.i.m 6
588.8.i.n 6
588.8.i.o 8
588.8.i.p 10
588.8.i.q 16
588.8.i.r 16
588.8.k \(\chi_{588}(509, \cdot)\) n/a 186 2
588.8.n \(\chi_{588}(263, \cdot)\) n/a 1104 2
588.8.o \(\chi_{588}(19, \cdot)\) n/a 560 2
588.8.q \(\chi_{588}(85, \cdot)\) n/a 396 6
588.8.t \(\chi_{588}(41, \cdot)\) n/a 780 6
588.8.u \(\chi_{588}(71, \cdot)\) n/a 4680 6
588.8.x \(\chi_{588}(55, \cdot)\) n/a 2352 6
588.8.y \(\chi_{588}(25, \cdot)\) n/a 780 12
588.8.ba \(\chi_{588}(103, \cdot)\) n/a 4704 12
588.8.bb \(\chi_{588}(11, \cdot)\) n/a 9360 12
588.8.be \(\chi_{588}(5, \cdot)\) n/a 1572 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(588))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(588)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(588))\)\(^{\oplus 1}\)