Properties

Label 59.7.d
Level $59$
Weight $7$
Character orbit 59.d
Rep. character $\chi_{59}(2,\cdot)$
Character field $\Q(\zeta_{58})$
Dimension $812$
Newform subspaces $1$
Sturm bound $35$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 59.d (of order \(58\) and degree \(28\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 59 \)
Character field: \(\Q(\zeta_{58})\)
Newform subspaces: \( 1 \)
Sturm bound: \(35\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(59, [\chi])\).

Total New Old
Modular forms 868 868 0
Cusp forms 812 812 0
Eisenstein series 56 56 0

Trace form

\( 812 q - 29 q^{2} - 39 q^{3} + 869 q^{4} - 171 q^{5} - 29 q^{6} - 435 q^{7} - 29 q^{8} - 7648 q^{9} - 29 q^{10} - 29 q^{11} + 1095 q^{12} - 29 q^{13} - 29 q^{14} - 569 q^{15} - 25051 q^{16} - 9071 q^{17}+ \cdots + 9513421 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(59, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
59.7.d.a 59.d 59.d $812$ $13.573$ None 59.7.d.a \(-29\) \(-39\) \(-171\) \(-435\) $\mathrm{SU}(2)[C_{58}]$