Properties

Label 592.8.a.c.1.3
Level 592592
Weight 88
Character 592.1
Self dual yes
Analytic conductor 184.932184.932
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,8,Mod(1,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 592=2437 592 = 2^{4} \cdot 37
Weight: k k == 8 8
Character orbit: [χ][\chi] == 592.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 184.931935087184.931935087
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x510621x4+102052x3+31004503x2305547358x22608804936 x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 74)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 26.0193-26.0193 of defining polynomial
Character χ\chi == 592.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q31.0193q3544.510q5+1685.44q71224.80q95629.72q11+5228.81q13+16890.3q1512575.5q1718367.1q1952281.0q2140252.9q23+218366.q25+105832.q27+18705.8q29+169281.q31+174630.q33917737.q3550653.0q37162194.q3926437.9q41406992.q43+666918.q45175342.q47+2.01715e6q49+390084.q511.82314e6q53+3.06544e6q55+569735.q57+1.24173e6q59+3.25092e6q612.06433e6q632.84714e6q65+1.66755e6q67+1.24862e6q69262493.q71+2.68612e6q736.77356e6q759.48853e6q77363284.q79604180.q81+6.71044e6q83+6.84750e6q85580239.q87+1.16083e7q89+8.81283e6q915.25097e6q93+1.00011e7q95+1.63488e7q97+6.89530e6q99+O(q100)q-31.0193 q^{3} -544.510 q^{5} +1685.44 q^{7} -1224.80 q^{9} -5629.72 q^{11} +5228.81 q^{13} +16890.3 q^{15} -12575.5 q^{17} -18367.1 q^{19} -52281.0 q^{21} -40252.9 q^{23} +218366. q^{25} +105832. q^{27} +18705.8 q^{29} +169281. q^{31} +174630. q^{33} -917737. q^{35} -50653.0 q^{37} -162194. q^{39} -26437.9 q^{41} -406992. q^{43} +666918. q^{45} -175342. q^{47} +2.01715e6 q^{49} +390084. q^{51} -1.82314e6 q^{53} +3.06544e6 q^{55} +569735. q^{57} +1.24173e6 q^{59} +3.25092e6 q^{61} -2.06433e6 q^{63} -2.84714e6 q^{65} +1.66755e6 q^{67} +1.24862e6 q^{69} -262493. q^{71} +2.68612e6 q^{73} -6.77356e6 q^{75} -9.48853e6 q^{77} -363284. q^{79} -604180. q^{81} +6.71044e6 q^{83} +6.84750e6 q^{85} -580239. q^{87} +1.16083e7 q^{89} +8.81283e6 q^{91} -5.25097e6 q^{93} +1.00011e7 q^{95} +1.63488e7 q^{97} +6.89530e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q28q314q5+980q7+8254q92956q11+2394q13+28820q1545108q1711764q19135378q2121052q23+194744q25439240q27+288454q29+25990712q99+O(q100) 6 q - 28 q^{3} - 14 q^{5} + 980 q^{7} + 8254 q^{9} - 2956 q^{11} + 2394 q^{13} + 28820 q^{15} - 45108 q^{17} - 11764 q^{19} - 135378 q^{21} - 21052 q^{23} + 194744 q^{25} - 439240 q^{27} + 288454 q^{29}+ \cdots - 25990712 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −31.0193 −0.663296 −0.331648 0.943403i 0.607605π-0.607605\pi
−0.331648 + 0.943403i 0.607605π0.607605\pi
44 0 0
55 −544.510 −1.94810 −0.974049 0.226337i 0.927325π-0.927325\pi
−0.974049 + 0.226337i 0.927325π0.927325\pi
66 0 0
77 1685.44 1.85724 0.928622 0.371026i 0.120994π-0.120994\pi
0.928622 + 0.371026i 0.120994π0.120994\pi
88 0 0
99 −1224.80 −0.560038
1010 0 0
1111 −5629.72 −1.27530 −0.637650 0.770327i 0.720093π-0.720093\pi
−0.637650 + 0.770327i 0.720093π0.720093\pi
1212 0 0
1313 5228.81 0.660087 0.330044 0.943966i 0.392937π-0.392937\pi
0.330044 + 0.943966i 0.392937π0.392937\pi
1414 0 0
1515 16890.3 1.29217
1616 0 0
1717 −12575.5 −0.620805 −0.310402 0.950605i 0.600464π-0.600464\pi
−0.310402 + 0.950605i 0.600464π0.600464\pi
1818 0 0
1919 −18367.1 −0.614332 −0.307166 0.951656i 0.599381π-0.599381\pi
−0.307166 + 0.951656i 0.599381π0.599381\pi
2020 0 0
2121 −52281.0 −1.23190
2222 0 0
2323 −40252.9 −0.689843 −0.344921 0.938632i 0.612094π-0.612094\pi
−0.344921 + 0.938632i 0.612094π0.612094\pi
2424 0 0
2525 218366. 2.79509
2626 0 0
2727 105832. 1.03477
2828 0 0
2929 18705.8 0.142424 0.0712118 0.997461i 0.477313π-0.477313\pi
0.0712118 + 0.997461i 0.477313π0.477313\pi
3030 0 0
3131 169281. 1.02057 0.510284 0.860006i 0.329540π-0.329540\pi
0.510284 + 0.860006i 0.329540π0.329540\pi
3232 0 0
3333 174630. 0.845901
3434 0 0
3535 −917737. −3.61809
3636 0 0
3737 −50653.0 −0.164399
3838 0 0
3939 −162194. −0.437833
4040 0 0
4141 −26437.9 −0.0599078 −0.0299539 0.999551i 0.509536π-0.509536\pi
−0.0299539 + 0.999551i 0.509536π0.509536\pi
4242 0 0
4343 −406992. −0.780632 −0.390316 0.920681i 0.627634π-0.627634\pi
−0.390316 + 0.920681i 0.627634π0.627634\pi
4444 0 0
4545 666918. 1.09101
4646 0 0
4747 −175342. −0.246345 −0.123173 0.992385i 0.539307π-0.539307\pi
−0.123173 + 0.992385i 0.539307π0.539307\pi
4848 0 0
4949 2.01715e6 2.44936
5050 0 0
5151 390084. 0.411778
5252 0 0
5353 −1.82314e6 −1.68211 −0.841056 0.540949i 0.818065π-0.818065\pi
−0.841056 + 0.540949i 0.818065π0.818065\pi
5454 0 0
5555 3.06544e6 2.48441
5656 0 0
5757 569735. 0.407484
5858 0 0
5959 1.24173e6 0.787131 0.393565 0.919297i 0.371242π-0.371242\pi
0.393565 + 0.919297i 0.371242π0.371242\pi
6060 0 0
6161 3.25092e6 1.83380 0.916899 0.399120i 0.130684π-0.130684\pi
0.916899 + 0.399120i 0.130684π0.130684\pi
6262 0 0
6363 −2.06433e6 −1.04013
6464 0 0
6565 −2.84714e6 −1.28592
6666 0 0
6767 1.66755e6 0.677357 0.338678 0.940902i 0.390020π-0.390020\pi
0.338678 + 0.940902i 0.390020π0.390020\pi
6868 0 0
6969 1.24862e6 0.457570
7070 0 0
7171 −262493. −0.0870388 −0.0435194 0.999053i 0.513857π-0.513857\pi
−0.0435194 + 0.999053i 0.513857π0.513857\pi
7272 0 0
7373 2.68612e6 0.808157 0.404078 0.914724i 0.367592π-0.367592\pi
0.404078 + 0.914724i 0.367592π0.367592\pi
7474 0 0
7575 −6.77356e6 −1.85397
7676 0 0
7777 −9.48853e6 −2.36854
7878 0 0
7979 −363284. −0.0828993 −0.0414497 0.999141i 0.513198π-0.513198\pi
−0.0414497 + 0.999141i 0.513198π0.513198\pi
8080 0 0
8181 −604180. −0.126319
8282 0 0
8383 6.71044e6 1.28818 0.644091 0.764948i 0.277236π-0.277236\pi
0.644091 + 0.764948i 0.277236π0.277236\pi
8484 0 0
8585 6.84750e6 1.20939
8686 0 0
8787 −580239. −0.0944691
8888 0 0
8989 1.16083e7 1.74543 0.872715 0.488229i 0.162357π-0.162357\pi
0.872715 + 0.488229i 0.162357π0.162357\pi
9090 0 0
9191 8.81283e6 1.22594
9292 0 0
9393 −5.25097e6 −0.676939
9494 0 0
9595 1.00011e7 1.19678
9696 0 0
9797 1.63488e7 1.81880 0.909400 0.415923i 0.136541π-0.136541\pi
0.909400 + 0.415923i 0.136541π0.136541\pi
9898 0 0
9999 6.89530e6 0.714216
100100 0 0
101101 7.79452e6 0.752774 0.376387 0.926462i 0.377166π-0.377166\pi
0.376387 + 0.926462i 0.377166π0.377166\pi
102102 0 0
103103 −8.12543e6 −0.732683 −0.366341 0.930481i 0.619390π-0.619390\pi
−0.366341 + 0.930481i 0.619390π0.619390\pi
104104 0 0
105105 2.84675e7 2.39987
106106 0 0
107107 −1.15348e6 −0.0910264 −0.0455132 0.998964i 0.514492π-0.514492\pi
−0.0455132 + 0.998964i 0.514492π0.514492\pi
108108 0 0
109109 −8.60358e6 −0.636336 −0.318168 0.948034i 0.603068π-0.603068\pi
−0.318168 + 0.948034i 0.603068π0.603068\pi
110110 0 0
111111 1.57122e6 0.109045
112112 0 0
113113 −7.76780e6 −0.506435 −0.253217 0.967409i 0.581489π-0.581489\pi
−0.253217 + 0.967409i 0.581489π0.581489\pi
114114 0 0
115115 2.19181e7 1.34388
116116 0 0
117117 −6.40427e6 −0.369674
118118 0 0
119119 −2.11953e7 −1.15299
120120 0 0
121121 1.22065e7 0.626388
122122 0 0
123123 820084. 0.0397366
124124 0 0
125125 −7.63627e7 −3.49700
126126 0 0
127127 −4.49536e6 −0.194738 −0.0973691 0.995248i 0.531043π-0.531043\pi
−0.0973691 + 0.995248i 0.531043π0.531043\pi
128128 0 0
129129 1.26246e7 0.517791
130130 0 0
131131 1.57640e7 0.612656 0.306328 0.951926i 0.400900π-0.400900\pi
0.306328 + 0.951926i 0.400900π0.400900\pi
132132 0 0
133133 −3.09566e7 −1.14097
134134 0 0
135135 −5.76264e7 −2.01583
136136 0 0
137137 −9.27787e6 −0.308267 −0.154133 0.988050i 0.549259π-0.549259\pi
−0.154133 + 0.988050i 0.549259π0.549259\pi
138138 0 0
139139 −5.30404e7 −1.67515 −0.837577 0.546319i 0.816028π-0.816028\pi
−0.837577 + 0.546319i 0.816028π0.816028\pi
140140 0 0
141141 5.43899e6 0.163400
142142 0 0
143143 −2.94367e7 −0.841809
144144 0 0
145145 −1.01855e7 −0.277455
146146 0 0
147147 −6.25706e7 −1.62465
148148 0 0
149149 2.61358e7 0.647267 0.323633 0.946183i 0.395096π-0.395096\pi
0.323633 + 0.946183i 0.395096π0.395096\pi
150150 0 0
151151 3.32760e7 0.786523 0.393261 0.919427i 0.371347π-0.371347\pi
0.393261 + 0.919427i 0.371347π0.371347\pi
152152 0 0
153153 1.54026e7 0.347674
154154 0 0
155155 −9.21751e7 −1.98817
156156 0 0
157157 −2.08133e7 −0.429232 −0.214616 0.976698i 0.568850π-0.568850\pi
−0.214616 + 0.976698i 0.568850π0.568850\pi
158158 0 0
159159 5.65525e7 1.11574
160160 0 0
161161 −6.78438e7 −1.28121
162162 0 0
163163 −4.00702e7 −0.724711 −0.362355 0.932040i 0.618027π-0.618027\pi
−0.362355 + 0.932040i 0.618027π0.618027\pi
164164 0 0
165165 −9.50877e7 −1.64790
166166 0 0
167167 −4.26523e7 −0.708656 −0.354328 0.935121i 0.615290π-0.615290\pi
−0.354328 + 0.935121i 0.615290π0.615290\pi
168168 0 0
169169 −3.54080e7 −0.564285
170170 0 0
171171 2.24961e7 0.344050
172172 0 0
173173 7.13528e6 0.104773 0.0523865 0.998627i 0.483317π-0.483317\pi
0.0523865 + 0.998627i 0.483317π0.483317\pi
174174 0 0
175175 3.68042e8 5.19116
176176 0 0
177177 −3.85177e7 −0.522101
178178 0 0
179179 −1.39174e8 −1.81373 −0.906866 0.421419i 0.861532π-0.861532\pi
−0.906866 + 0.421419i 0.861532π0.861532\pi
180180 0 0
181181 −6.11153e7 −0.766082 −0.383041 0.923731i 0.625123π-0.625123\pi
−0.383041 + 0.923731i 0.625123π0.625123\pi
182182 0 0
183183 −1.00841e8 −1.21635
184184 0 0
185185 2.75811e7 0.320265
186186 0 0
187187 7.07967e7 0.791712
188188 0 0
189189 1.78373e8 1.92182
190190 0 0
191191 1.77318e8 1.84135 0.920676 0.390329i 0.127639π-0.127639\pi
0.920676 + 0.390329i 0.127639π0.127639\pi
192192 0 0
193193 −6.75041e7 −0.675896 −0.337948 0.941165i 0.609733π-0.609733\pi
−0.337948 + 0.941165i 0.609733π0.609733\pi
194194 0 0
195195 8.83163e7 0.852943
196196 0 0
197197 −1.03097e8 −0.960761 −0.480380 0.877060i 0.659501π-0.659501\pi
−0.480380 + 0.877060i 0.659501π0.659501\pi
198198 0 0
199199 −1.78780e8 −1.60817 −0.804086 0.594512i 0.797345π-0.797345\pi
−0.804086 + 0.594512i 0.797345π0.797345\pi
200200 0 0
201201 −5.17263e7 −0.449288
202202 0 0
203203 3.15273e7 0.264516
204204 0 0
205205 1.43957e7 0.116706
206206 0 0
207207 4.93019e7 0.386338
208208 0 0
209209 1.03402e8 0.783458
210210 0 0
211211 −2.20832e8 −1.61836 −0.809178 0.587564i 0.800087π-0.800087\pi
−0.809178 + 0.587564i 0.800087π0.800087\pi
212212 0 0
213213 8.14233e6 0.0577325
214214 0 0
215215 2.21611e8 1.52075
216216 0 0
217217 2.85312e8 1.89544
218218 0 0
219219 −8.33216e7 −0.536047
220220 0 0
221221 −6.57551e7 −0.409786
222222 0 0
223223 −2.27015e8 −1.37085 −0.685423 0.728146i 0.740382π-0.740382\pi
−0.685423 + 0.728146i 0.740382π0.740382\pi
224224 0 0
225225 −2.67456e8 −1.56535
226226 0 0
227227 2.27056e8 1.28838 0.644188 0.764867i 0.277195π-0.277195\pi
0.644188 + 0.764867i 0.277195π0.277195\pi
228228 0 0
229229 1.74743e8 0.961557 0.480778 0.876842i 0.340354π-0.340354\pi
0.480778 + 0.876842i 0.340354π0.340354\pi
230230 0 0
231231 2.94327e8 1.57105
232232 0 0
233233 2.66617e8 1.38083 0.690417 0.723411i 0.257427π-0.257427\pi
0.690417 + 0.723411i 0.257427π0.257427\pi
234234 0 0
235235 9.54755e7 0.479904
236236 0 0
237237 1.12688e7 0.0549868
238238 0 0
239239 −7.94730e7 −0.376554 −0.188277 0.982116i 0.560290π-0.560290\pi
−0.188277 + 0.982116i 0.560290π0.560290\pi
240240 0 0
241241 5.79710e7 0.266779 0.133389 0.991064i 0.457414π-0.457414\pi
0.133389 + 0.991064i 0.457414π0.457414\pi
242242 0 0
243243 −2.12713e8 −0.950980
244244 0 0
245245 −1.09836e9 −4.77159
246246 0 0
247247 −9.60382e7 −0.405513
248248 0 0
249249 −2.08153e8 −0.854447
250250 0 0
251251 −3.14343e8 −1.25472 −0.627358 0.778731i 0.715864π-0.715864\pi
−0.627358 + 0.778731i 0.715864π0.715864\pi
252252 0 0
253253 2.26613e8 0.879756
254254 0 0
255255 −2.12405e8 −0.802183
256256 0 0
257257 3.09191e8 1.13622 0.568108 0.822954i 0.307675π-0.307675\pi
0.568108 + 0.822954i 0.307675π0.307675\pi
258258 0 0
259259 −8.53724e7 −0.305329
260260 0 0
261261 −2.29109e7 −0.0797627
262262 0 0
263263 3.09539e8 1.04923 0.524614 0.851340i 0.324210π-0.324210\pi
0.524614 + 0.851340i 0.324210π0.324210\pi
264264 0 0
265265 9.92718e8 3.27692
266266 0 0
267267 −3.60080e8 −1.15774
268268 0 0
269269 −2.59451e8 −0.812686 −0.406343 0.913721i 0.633196π-0.633196\pi
−0.406343 + 0.913721i 0.633196π0.633196\pi
270270 0 0
271271 −7.90601e7 −0.241304 −0.120652 0.992695i 0.538499π-0.538499\pi
−0.120652 + 0.992695i 0.538499π0.538499\pi
272272 0 0
273273 −2.73368e8 −0.813164
274274 0 0
275275 −1.22934e9 −3.56457
276276 0 0
277277 2.41348e8 0.682283 0.341142 0.940012i 0.389186π-0.389186\pi
0.341142 + 0.940012i 0.389186π0.389186\pi
278278 0 0
279279 −2.07336e8 −0.571557
280280 0 0
281281 −1.24454e8 −0.334609 −0.167304 0.985905i 0.553506π-0.553506\pi
−0.167304 + 0.985905i 0.553506π0.553506\pi
282282 0 0
283283 −4.05747e8 −1.06415 −0.532074 0.846698i 0.678587π-0.678587\pi
−0.532074 + 0.846698i 0.678587π0.678587\pi
284284 0 0
285285 −3.10226e8 −0.793819
286286 0 0
287287 −4.45593e7 −0.111263
288288 0 0
289289 −2.52195e8 −0.614601
290290 0 0
291291 −5.07128e8 −1.20640
292292 0 0
293293 4.99201e8 1.15941 0.579707 0.814825i 0.303167π-0.303167\pi
0.579707 + 0.814825i 0.303167π0.303167\pi
294294 0 0
295295 −6.76137e8 −1.53341
296296 0 0
297297 −5.95803e8 −1.31964
298298 0 0
299299 −2.10475e8 −0.455357
300300 0 0
301301 −6.85959e8 −1.44983
302302 0 0
303303 −2.41781e8 −0.499312
304304 0 0
305305 −1.77016e9 −3.57242
306306 0 0
307307 3.21540e8 0.634235 0.317118 0.948386i 0.397285π-0.397285\pi
0.317118 + 0.948386i 0.397285π0.397285\pi
308308 0 0
309309 2.52045e8 0.485986
310310 0 0
311311 1.03297e8 0.194726 0.0973631 0.995249i 0.468959π-0.468959\pi
0.0973631 + 0.995249i 0.468959π0.468959\pi
312312 0 0
313313 5.25918e8 0.969422 0.484711 0.874674i 0.338925π-0.338925\pi
0.484711 + 0.874674i 0.338925π0.338925\pi
314314 0 0
315315 1.12405e9 2.02627
316316 0 0
317317 −6.26026e7 −0.110379 −0.0551893 0.998476i 0.517576π-0.517576\pi
−0.0551893 + 0.998476i 0.517576π0.517576\pi
318318 0 0
319319 −1.05308e8 −0.181633
320320 0 0
321321 3.57802e7 0.0603775
322322 0 0
323323 2.30976e8 0.381381
324324 0 0
325325 1.14180e9 1.84500
326326 0 0
327327 2.66877e8 0.422079
328328 0 0
329329 −2.95528e8 −0.457523
330330 0 0
331331 3.10780e8 0.471037 0.235518 0.971870i 0.424321π-0.424321\pi
0.235518 + 0.971870i 0.424321π0.424321\pi
332332 0 0
333333 6.20400e7 0.0920697
334334 0 0
335335 −9.07998e8 −1.31956
336336 0 0
337337 −9.56000e8 −1.36067 −0.680335 0.732901i 0.738166π-0.738166\pi
−0.680335 + 0.732901i 0.738166π0.738166\pi
338338 0 0
339339 2.40952e8 0.335916
340340 0 0
341341 −9.53003e8 −1.30153
342342 0 0
343343 2.01175e9 2.69181
344344 0 0
345345 −6.79885e8 −0.891392
346346 0 0
347347 −1.37536e9 −1.76711 −0.883555 0.468327i 0.844857π-0.844857\pi
−0.883555 + 0.468327i 0.844857π0.844857\pi
348348 0 0
349349 −1.38134e9 −1.73945 −0.869725 0.493537i 0.835704π-0.835704\pi
−0.869725 + 0.493537i 0.835704π0.835704\pi
350350 0 0
351351 5.53374e8 0.683037
352352 0 0
353353 −6.48672e8 −0.784899 −0.392450 0.919774i 0.628372π-0.628372\pi
−0.392450 + 0.919774i 0.628372π0.628372\pi
354354 0 0
355355 1.42930e8 0.169560
356356 0 0
357357 6.57462e8 0.764772
358358 0 0
359359 −3.64068e8 −0.415291 −0.207645 0.978204i 0.566580π-0.566580\pi
−0.207645 + 0.978204i 0.566580π0.566580\pi
360360 0 0
361361 −5.56521e8 −0.622596
362362 0 0
363363 −3.78638e8 −0.415481
364364 0 0
365365 −1.46262e9 −1.57437
366366 0 0
367367 −3.90647e8 −0.412528 −0.206264 0.978496i 0.566131π-0.566131\pi
−0.206264 + 0.978496i 0.566131π0.566131\pi
368368 0 0
369369 3.23812e7 0.0335506
370370 0 0
371371 −3.07279e9 −3.12409
372372 0 0
373373 −8.58735e7 −0.0856797 −0.0428399 0.999082i 0.513641π-0.513641\pi
−0.0428399 + 0.999082i 0.513641π0.513641\pi
374374 0 0
375375 2.36872e9 2.31955
376376 0 0
377377 9.78089e7 0.0940121
378378 0 0
379379 −3.53330e8 −0.333383 −0.166691 0.986009i 0.553308π-0.553308\pi
−0.166691 + 0.986009i 0.553308π0.553308\pi
380380 0 0
381381 1.39443e8 0.129169
382382 0 0
383383 4.90315e8 0.445943 0.222971 0.974825i 0.428424π-0.428424\pi
0.222971 + 0.974825i 0.428424π0.428424\pi
384384 0 0
385385 5.16660e9 4.61415
386386 0 0
387387 4.98486e8 0.437184
388388 0 0
389389 9.97474e7 0.0859168 0.0429584 0.999077i 0.486322π-0.486322\pi
0.0429584 + 0.999077i 0.486322π0.486322\pi
390390 0 0
391391 5.06202e8 0.428258
392392 0 0
393393 −4.88988e8 −0.406372
394394 0 0
395395 1.97812e8 0.161496
396396 0 0
397397 −2.09994e8 −0.168438 −0.0842189 0.996447i 0.526839π-0.526839\pi
−0.0842189 + 0.996447i 0.526839π0.526839\pi
398398 0 0
399399 9.60252e8 0.756798
400400 0 0
401401 5.55414e8 0.430141 0.215071 0.976598i 0.431002π-0.431002\pi
0.215071 + 0.976598i 0.431002π0.431002\pi
402402 0 0
403403 8.85138e8 0.673664
404404 0 0
405405 3.28982e8 0.246082
406406 0 0
407407 2.85162e8 0.209658
408408 0 0
409409 1.80096e9 1.30158 0.650792 0.759256i 0.274437π-0.274437\pi
0.650792 + 0.759256i 0.274437π0.274437\pi
410410 0 0
411411 2.87793e8 0.204472
412412 0 0
413413 2.09286e9 1.46189
414414 0 0
415415 −3.65390e9 −2.50951
416416 0 0
417417 1.64527e9 1.11112
418418 0 0
419419 1.69929e7 0.0112854 0.00564272 0.999984i 0.498204π-0.498204\pi
0.00564272 + 0.999984i 0.498204π0.498204\pi
420420 0 0
421421 2.76374e9 1.80514 0.902568 0.430548i 0.141680π-0.141680\pi
0.902568 + 0.430548i 0.141680π0.141680\pi
422422 0 0
423423 2.14760e8 0.137963
424424 0 0
425425 −2.74607e9 −1.73520
426426 0 0
427427 5.47921e9 3.40581
428428 0 0
429429 9.13107e8 0.558369
430430 0 0
431431 2.95133e9 1.77561 0.887804 0.460222i 0.152230π-0.152230\pi
0.887804 + 0.460222i 0.152230π0.152230\pi
432432 0 0
433433 −2.29366e9 −1.35776 −0.678878 0.734251i 0.737533π-0.737533\pi
−0.678878 + 0.734251i 0.737533π0.737533\pi
434434 0 0
435435 3.15946e8 0.184035
436436 0 0
437437 7.39331e8 0.423793
438438 0 0
439439 −2.21394e9 −1.24893 −0.624467 0.781052i 0.714684π-0.714684\pi
−0.624467 + 0.781052i 0.714684π0.714684\pi
440440 0 0
441441 −2.47061e9 −1.37173
442442 0 0
443443 2.80148e9 1.53100 0.765498 0.643438i 0.222493π-0.222493\pi
0.765498 + 0.643438i 0.222493π0.222493\pi
444444 0 0
445445 −6.32082e9 −3.40027
446446 0 0
447447 −8.10713e8 −0.429330
448448 0 0
449449 −1.24071e9 −0.646856 −0.323428 0.946253i 0.604835π-0.604835\pi
−0.323428 + 0.946253i 0.604835π0.604835\pi
450450 0 0
451451 1.48838e8 0.0764003
452452 0 0
453453 −1.03220e9 −0.521698
454454 0 0
455455 −4.79867e9 −2.38826
456456 0 0
457457 8.16764e8 0.400304 0.200152 0.979765i 0.435856π-0.435856\pi
0.200152 + 0.979765i 0.435856π0.435856\pi
458458 0 0
459459 −1.33089e9 −0.642389
460460 0 0
461461 1.07694e9 0.511962 0.255981 0.966682i 0.417601π-0.417601\pi
0.255981 + 0.966682i 0.417601π0.417601\pi
462462 0 0
463463 −3.16535e9 −1.48214 −0.741068 0.671430i 0.765680π-0.765680\pi
−0.741068 + 0.671430i 0.765680π0.765680\pi
464464 0 0
465465 2.85921e9 1.31874
466466 0 0
467467 −2.37777e9 −1.08034 −0.540171 0.841555i 0.681640π-0.681640\pi
−0.540171 + 0.841555i 0.681640π0.681640\pi
468468 0 0
469469 2.81055e9 1.25802
470470 0 0
471471 6.45614e8 0.284708
472472 0 0
473473 2.29125e9 0.995540
474474 0 0
475475 −4.01076e9 −1.71711
476476 0 0
477477 2.23299e9 0.942047
478478 0 0
479479 −3.68467e9 −1.53188 −0.765939 0.642914i 0.777725π-0.777725\pi
−0.765939 + 0.642914i 0.777725π0.777725\pi
480480 0 0
481481 −2.64855e8 −0.108518
482482 0 0
483483 2.10447e9 0.849820
484484 0 0
485485 −8.90209e9 −3.54320
486486 0 0
487487 1.99019e9 0.780807 0.390404 0.920644i 0.372335π-0.372335\pi
0.390404 + 0.920644i 0.372335π0.372335\pi
488488 0 0
489489 1.24295e9 0.480698
490490 0 0
491491 1.03457e9 0.394433 0.197217 0.980360i 0.436810π-0.436810\pi
0.197217 + 0.980360i 0.436810π0.436810\pi
492492 0 0
493493 −2.35235e8 −0.0884173
494494 0 0
495495 −3.75456e9 −1.39136
496496 0 0
497497 −4.42414e8 −0.161652
498498 0 0
499499 1.69821e9 0.611843 0.305922 0.952057i 0.401035π-0.401035\pi
0.305922 + 0.952057i 0.401035π0.401035\pi
500500 0 0
501501 1.32305e9 0.470049
502502 0 0
503503 −9.98691e8 −0.349899 −0.174950 0.984577i 0.555976π-0.555976\pi
−0.174950 + 0.984577i 0.555976π0.555976\pi
504504 0 0
505505 −4.24420e9 −1.46648
506506 0 0
507507 1.09833e9 0.374288
508508 0 0
509509 4.86581e9 1.63547 0.817735 0.575594i 0.195229π-0.195229\pi
0.817735 + 0.575594i 0.195229π0.195229\pi
510510 0 0
511511 4.52729e9 1.50094
512512 0 0
513513 −1.94382e9 −0.635691
514514 0 0
515515 4.42438e9 1.42734
516516 0 0
517517 9.87127e8 0.314164
518518 0 0
519519 −2.21331e8 −0.0694956
520520 0 0
521521 −2.29363e9 −0.710544 −0.355272 0.934763i 0.615612π-0.615612\pi
−0.355272 + 0.934763i 0.615612π0.615612\pi
522522 0 0
523523 1.41986e8 0.0434000 0.0217000 0.999765i 0.493092π-0.493092\pi
0.0217000 + 0.999765i 0.493092π0.493092\pi
524524 0 0
525525 −1.14164e10 −3.44328
526526 0 0
527527 −2.12880e9 −0.633574
528528 0 0
529529 −1.78453e9 −0.524117
530530 0 0
531531 −1.52088e9 −0.440823
532532 0 0
533533 −1.38239e8 −0.0395444
534534 0 0
535535 6.28082e8 0.177328
536536 0 0
537537 4.31709e9 1.20304
538538 0 0
539539 −1.13560e10 −3.12366
540540 0 0
541541 6.73035e9 1.82746 0.913729 0.406324i 0.133190π-0.133190\pi
0.913729 + 0.406324i 0.133190π0.133190\pi
542542 0 0
543543 1.89575e9 0.508139
544544 0 0
545545 4.68474e9 1.23964
546546 0 0
547547 2.10936e9 0.551056 0.275528 0.961293i 0.411147π-0.411147\pi
0.275528 + 0.961293i 0.411147π0.411147\pi
548548 0 0
549549 −3.98173e9 −1.02700
550550 0 0
551551 −3.43571e8 −0.0874955
552552 0 0
553553 −6.12291e8 −0.153964
554554 0 0
555555 −8.55545e8 −0.212431
556556 0 0
557557 −5.46338e9 −1.33958 −0.669790 0.742551i 0.733616π-0.733616\pi
−0.669790 + 0.742551i 0.733616π0.733616\pi
558558 0 0
559559 −2.12809e9 −0.515286
560560 0 0
561561 −2.19606e9 −0.525140
562562 0 0
563563 2.38438e9 0.563113 0.281557 0.959545i 0.409149π-0.409149\pi
0.281557 + 0.959545i 0.409149π0.409149\pi
564564 0 0
565565 4.22964e9 0.986584
566566 0 0
567567 −1.01831e9 −0.234605
568568 0 0
569569 4.69886e9 1.06930 0.534650 0.845073i 0.320443π-0.320443\pi
0.534650 + 0.845073i 0.320443π0.320443\pi
570570 0 0
571571 −2.04617e9 −0.459954 −0.229977 0.973196i 0.573865π-0.573865\pi
−0.229977 + 0.973196i 0.573865π0.573865\pi
572572 0 0
573573 −5.50029e9 −1.22136
574574 0 0
575575 −8.78988e9 −1.92817
576576 0 0
577577 −6.13969e9 −1.33055 −0.665274 0.746599i 0.731685π-0.731685\pi
−0.665274 + 0.746599i 0.731685π0.731685\pi
578578 0 0
579579 2.09393e9 0.448319
580580 0 0
581581 1.13100e10 2.39247
582582 0 0
583583 1.02638e10 2.14520
584584 0 0
585585 3.48719e9 0.720161
586586 0 0
587587 1.29772e9 0.264819 0.132410 0.991195i 0.457729π-0.457729\pi
0.132410 + 0.991195i 0.457729π0.457729\pi
588588 0 0
589589 −3.10920e9 −0.626968
590590 0 0
591591 3.19800e9 0.637269
592592 0 0
593593 −1.01765e9 −0.200404 −0.100202 0.994967i 0.531949π-0.531949\pi
−0.100202 + 0.994967i 0.531949π0.531949\pi
594594 0 0
595595 1.15410e10 2.24613
596596 0 0
597597 5.54562e9 1.06670
598598 0 0
599599 −1.36024e9 −0.258595 −0.129298 0.991606i 0.541272π-0.541272\pi
−0.129298 + 0.991606i 0.541272π0.541272\pi
600600 0 0
601601 5.83436e9 1.09631 0.548154 0.836378i 0.315331π-0.315331\pi
0.548154 + 0.836378i 0.315331π0.315331\pi
602602 0 0
603603 −2.04242e9 −0.379346
604604 0 0
605605 −6.64658e9 −1.22027
606606 0 0
607607 −4.09613e9 −0.743384 −0.371692 0.928356i 0.621222π-0.621222\pi
−0.371692 + 0.928356i 0.621222π0.621222\pi
608608 0 0
609609 −9.77956e8 −0.175452
610610 0 0
611611 −9.16831e8 −0.162609
612612 0 0
613613 −5.20044e8 −0.0911861 −0.0455930 0.998960i 0.514518π-0.514518\pi
−0.0455930 + 0.998960i 0.514518π0.514518\pi
614614 0 0
615615 −4.46544e8 −0.0774108
616616 0 0
617617 3.87499e9 0.664160 0.332080 0.943251i 0.392250π-0.392250\pi
0.332080 + 0.943251i 0.392250π0.392250\pi
618618 0 0
619619 6.93110e9 1.17459 0.587293 0.809375i 0.300194π-0.300194\pi
0.587293 + 0.809375i 0.300194π0.300194\pi
620620 0 0
621621 −4.26004e9 −0.713827
622622 0 0
623623 1.95650e10 3.24169
624624 0 0
625625 2.45204e10 4.01742
626626 0 0
627627 −3.20745e9 −0.519665
628628 0 0
629629 6.36988e8 0.102060
630630 0 0
631631 −1.27564e9 −0.202128 −0.101064 0.994880i 0.532225π-0.532225\pi
−0.101064 + 0.994880i 0.532225π0.532225\pi
632632 0 0
633633 6.85006e9 1.07345
634634 0 0
635635 2.44777e9 0.379369
636636 0 0
637637 1.05473e10 1.61679
638638 0 0
639639 3.21502e8 0.0487450
640640 0 0
641641 8.45969e9 1.26868 0.634339 0.773055i 0.281272π-0.281272\pi
0.634339 + 0.773055i 0.281272π0.281272\pi
642642 0 0
643643 2.53383e9 0.375871 0.187935 0.982181i 0.439820π-0.439820\pi
0.187935 + 0.982181i 0.439820π0.439820\pi
644644 0 0
645645 −6.87423e9 −1.00871
646646 0 0
647647 9.30854e8 0.135119 0.0675595 0.997715i 0.478479π-0.478479\pi
0.0675595 + 0.997715i 0.478479π0.478479\pi
648648 0 0
649649 −6.99061e9 −1.00383
650650 0 0
651651 −8.85018e9 −1.25724
652652 0 0
653653 4.54702e9 0.639044 0.319522 0.947579i 0.396478π-0.396478\pi
0.319522 + 0.947579i 0.396478π0.396478\pi
654654 0 0
655655 −8.58365e9 −1.19351
656656 0 0
657657 −3.28997e9 −0.452599
658658 0 0
659659 −5.26043e9 −0.716015 −0.358007 0.933719i 0.616544π-0.616544\pi
−0.358007 + 0.933719i 0.616544π0.616544\pi
660660 0 0
661661 −9.97829e8 −0.134385 −0.0671925 0.997740i 0.521404π-0.521404\pi
−0.0671925 + 0.997740i 0.521404π0.521404\pi
662662 0 0
663663 2.03968e9 0.271809
664664 0 0
665665 1.68562e10 2.22271
666666 0 0
667667 −7.52962e8 −0.0982500
668668 0 0
669669 7.04186e9 0.909276
670670 0 0
671671 −1.83017e10 −2.33864
672672 0 0
673673 −2.48723e9 −0.314530 −0.157265 0.987556i 0.550268π-0.550268\pi
−0.157265 + 0.987556i 0.550268π0.550268\pi
674674 0 0
675675 2.31101e10 2.89226
676676 0 0
677677 −6.47115e9 −0.801532 −0.400766 0.916180i 0.631256π-0.631256\pi
−0.400766 + 0.916180i 0.631256π0.631256\pi
678678 0 0
679679 2.75549e10 3.37796
680680 0 0
681681 −7.04312e9 −0.854575
682682 0 0
683683 4.86398e9 0.584143 0.292071 0.956397i 0.405655π-0.405655\pi
0.292071 + 0.956397i 0.405655π0.405655\pi
684684 0 0
685685 5.05189e9 0.600533
686686 0 0
687687 −5.42040e9 −0.637797
688688 0 0
689689 −9.53287e9 −1.11034
690690 0 0
691691 −7.51546e9 −0.866527 −0.433264 0.901267i 0.642638π-0.642638\pi
−0.433264 + 0.901267i 0.642638π0.642638\pi
692692 0 0
693693 1.16216e10 1.32647
694694 0 0
695695 2.88810e10 3.26336
696696 0 0
697697 3.32470e8 0.0371910
698698 0 0
699699 −8.27026e9 −0.915902
700700 0 0
701701 −1.02509e10 −1.12396 −0.561978 0.827152i 0.689960π-0.689960\pi
−0.561978 + 0.827152i 0.689960π0.689960\pi
702702 0 0
703703 9.30350e8 0.100996
704704 0 0
705705 −2.96158e9 −0.318319
706706 0 0
707707 1.31372e10 1.39809
708708 0 0
709709 5.01078e9 0.528012 0.264006 0.964521i 0.414956π-0.414956\pi
0.264006 + 0.964521i 0.414956π0.414956\pi
710710 0 0
711711 4.44951e8 0.0464268
712712 0 0
713713 −6.81405e9 −0.704032
714714 0 0
715715 1.60286e10 1.63993
716716 0 0
717717 2.46520e9 0.249767
718718 0 0
719719 −1.55089e10 −1.55607 −0.778035 0.628221i 0.783783π-0.783783\pi
−0.778035 + 0.628221i 0.783783π0.783783\pi
720720 0 0
721721 −1.36949e10 −1.36077
722722 0 0
723723 −1.79822e9 −0.176953
724724 0 0
725725 4.08470e9 0.398086
726726 0 0
727727 9.09964e8 0.0878322 0.0439161 0.999035i 0.486017π-0.486017\pi
0.0439161 + 0.999035i 0.486017π0.486017\pi
728728 0 0
729729 7.91954e9 0.757101
730730 0 0
731731 5.11814e9 0.484620
732732 0 0
733733 −6.80412e9 −0.638128 −0.319064 0.947733i 0.603369π-0.603369\pi
−0.319064 + 0.947733i 0.603369π0.603369\pi
734734 0 0
735735 3.40703e10 3.16498
736736 0 0
737737 −9.38784e9 −0.863832
738738 0 0
739739 −9.88530e9 −0.901020 −0.450510 0.892771i 0.648758π-0.648758\pi
−0.450510 + 0.892771i 0.648758π0.648758\pi
740740 0 0
741741 2.97904e9 0.268975
742742 0 0
743743 1.40609e10 1.25763 0.628814 0.777556i 0.283541π-0.283541\pi
0.628814 + 0.777556i 0.283541π0.283541\pi
744744 0 0
745745 −1.42312e10 −1.26094
746746 0 0
747747 −8.21897e9 −0.721432
748748 0 0
749749 −1.94412e9 −0.169058
750750 0 0
751751 −1.89107e10 −1.62918 −0.814590 0.580038i 0.803038π-0.803038\pi
−0.814590 + 0.580038i 0.803038π0.803038\pi
752752 0 0
753753 9.75069e9 0.832248
754754 0 0
755755 −1.81191e10 −1.53222
756756 0 0
757757 −1.68703e9 −0.141348 −0.0706738 0.997499i 0.522515π-0.522515\pi
−0.0706738 + 0.997499i 0.522515π0.522515\pi
758758 0 0
759759 −7.02936e9 −0.583539
760760 0 0
761761 1.35093e10 1.11118 0.555591 0.831456i 0.312492π-0.312492\pi
0.555591 + 0.831456i 0.312492π0.312492\pi
762762 0 0
763763 −1.45008e10 −1.18183
764764 0 0
765765 −8.38685e9 −0.677304
766766 0 0
767767 6.49280e9 0.519575
768768 0 0
769769 −2.04375e10 −1.62064 −0.810318 0.585990i 0.800706π-0.800706\pi
−0.810318 + 0.585990i 0.800706π0.800706\pi
770770 0 0
771771 −9.59089e9 −0.753648
772772 0 0
773773 −3.22437e9 −0.251083 −0.125541 0.992088i 0.540067π-0.540067\pi
−0.125541 + 0.992088i 0.540067π0.540067\pi
774774 0 0
775775 3.69652e10 2.85258
776776 0 0
777777 2.64819e9 0.202524
778778 0 0
779779 4.85588e8 0.0368033
780780 0 0
781781 1.47776e9 0.111000
782782 0 0
783783 1.97966e9 0.147375
784784 0 0
785785 1.13331e10 0.836187
786786 0 0
787787 1.34167e10 0.981147 0.490574 0.871400i 0.336787π-0.336787\pi
0.490574 + 0.871400i 0.336787π0.336787\pi
788788 0 0
789789 −9.60167e9 −0.695949
790790 0 0
791791 −1.30921e10 −0.940573
792792 0 0
793793 1.69984e10 1.21047
794794 0 0
795795 −3.07934e10 −2.17357
796796 0 0
797797 1.04838e10 0.733528 0.366764 0.930314i 0.380466π-0.380466\pi
0.366764 + 0.930314i 0.380466π0.380466\pi
798798 0 0
799799 2.20502e9 0.152932
800800 0 0
801801 −1.42179e10 −0.977508
802802 0 0
803803 −1.51221e10 −1.03064
804804 0 0
805805 3.69416e10 2.49592
806806 0 0
807807 8.04800e9 0.539052
808808 0 0
809809 8.66031e9 0.575060 0.287530 0.957772i 0.407166π-0.407166\pi
0.287530 + 0.957772i 0.407166π0.407166\pi
810810 0 0
811811 −7.78352e9 −0.512393 −0.256196 0.966625i 0.582469π-0.582469\pi
−0.256196 + 0.966625i 0.582469π0.582469\pi
812812 0 0
813813 2.45239e9 0.160056
814814 0 0
815815 2.18186e10 1.41181
816816 0 0
817817 7.47528e9 0.479568
818818 0 0
819819 −1.07940e10 −0.686575
820820 0 0
821821 7.91243e9 0.499009 0.249505 0.968374i 0.419732π-0.419732\pi
0.249505 + 0.968374i 0.419732π0.419732\pi
822822 0 0
823823 4.48091e9 0.280199 0.140100 0.990137i 0.455258π-0.455258\pi
0.140100 + 0.990137i 0.455258π0.455258\pi
824824 0 0
825825 3.81332e10 2.36437
826826 0 0
827827 7.15443e8 0.0439851 0.0219926 0.999758i 0.492999π-0.492999\pi
0.0219926 + 0.999758i 0.492999π0.492999\pi
828828 0 0
829829 −2.36866e10 −1.44398 −0.721990 0.691903i 0.756773π-0.756773\pi
−0.721990 + 0.691903i 0.756773π0.756773\pi
830830 0 0
831831 −7.48645e9 −0.452556
832832 0 0
833833 −2.53668e10 −1.52057
834834 0 0
835835 2.32246e10 1.38053
836836 0 0
837837 1.79153e10 1.05605
838838 0 0
839839 −2.37629e10 −1.38909 −0.694547 0.719447i 0.744395π-0.744395\pi
−0.694547 + 0.719447i 0.744395π0.744395\pi
840840 0 0
841841 −1.69000e10 −0.979715
842842 0 0
843843 3.86048e9 0.221945
844844 0 0
845845 1.92800e10 1.09928
846846 0 0
847847 2.05733e10 1.16336
848848 0 0
849849 1.25860e10 0.705846
850850 0 0
851851 2.03893e9 0.113409
852852 0 0
853853 −3.28503e10 −1.81225 −0.906126 0.423009i 0.860974π-0.860974\pi
−0.906126 + 0.423009i 0.860974π0.860974\pi
854854 0 0
855855 −1.22494e10 −0.670242
856856 0 0
857857 −5.67832e9 −0.308168 −0.154084 0.988058i 0.549243π-0.549243\pi
−0.154084 + 0.988058i 0.549243π0.549243\pi
858858 0 0
859859 1.22964e10 0.661914 0.330957 0.943646i 0.392628π-0.392628\pi
0.330957 + 0.943646i 0.392628π0.392628\pi
860860 0 0
861861 1.38220e9 0.0738006
862862 0 0
863863 −1.75550e10 −0.929743 −0.464871 0.885378i 0.653899π-0.653899\pi
−0.464871 + 0.885378i 0.653899π0.653899\pi
864864 0 0
865865 −3.88523e9 −0.204108
866866 0 0
867867 7.82290e9 0.407663
868868 0 0
869869 2.04518e9 0.105721
870870 0 0
871871 8.71931e9 0.447115
872872 0 0
873873 −2.00241e10 −1.01860
874874 0 0
875875 −1.28704e11 −6.49479
876876 0 0
877877 −9.75144e7 −0.00488169 −0.00244084 0.999997i 0.500777π-0.500777\pi
−0.00244084 + 0.999997i 0.500777π0.500777\pi
878878 0 0
879879 −1.54848e10 −0.769035
880880 0 0
881881 −1.68618e10 −0.830786 −0.415393 0.909642i 0.636356π-0.636356\pi
−0.415393 + 0.909642i 0.636356π0.636356\pi
882882 0 0
883883 −2.81287e10 −1.37495 −0.687476 0.726207i 0.741281π-0.741281\pi
−0.687476 + 0.726207i 0.741281π0.741281\pi
884884 0 0
885885 2.09733e10 1.01710
886886 0 0
887887 −1.49073e10 −0.717241 −0.358621 0.933483i 0.616753π-0.616753\pi
−0.358621 + 0.933483i 0.616753π0.616753\pi
888888 0 0
889889 −7.57664e9 −0.361676
890890 0 0
891891 3.40136e9 0.161095
892892 0 0
893893 3.22053e9 0.151338
894894 0 0
895895 7.57817e10 3.53333
896896 0 0
897897 6.52879e9 0.302036
898898 0 0
899899 3.16653e9 0.145353
900900 0 0
901901 2.29270e10 1.04426
902902 0 0
903903 2.12780e10 0.961664
904904 0 0
905905 3.32779e10 1.49240
906906 0 0
907907 −2.00171e10 −0.890790 −0.445395 0.895334i 0.646937π-0.646937\pi
−0.445395 + 0.895334i 0.646937π0.646937\pi
908908 0 0
909909 −9.54676e9 −0.421582
910910 0 0
911911 1.55429e10 0.681113 0.340556 0.940224i 0.389385π-0.389385\pi
0.340556 + 0.940224i 0.389385π0.389385\pi
912912 0 0
913913 −3.77779e10 −1.64282
914914 0 0
915915 5.49090e10 2.36957
916916 0 0
917917 2.65692e10 1.13785
918918 0 0
919919 7.07850e9 0.300841 0.150420 0.988622i 0.451937π-0.451937\pi
0.150420 + 0.988622i 0.451937π0.451937\pi
920920 0 0
921921 −9.97394e9 −0.420686
922922 0 0
923923 −1.37252e9 −0.0574532
924924 0 0
925925 −1.10609e10 −0.459509
926926 0 0
927927 9.95205e9 0.410330
928928 0 0
929929 −9.26783e9 −0.379248 −0.189624 0.981857i 0.560727π-0.560727\pi
−0.189624 + 0.981857i 0.560727π0.560727\pi
930930 0 0
931931 −3.70493e10 −1.50472
932932 0 0
933933 −3.20419e9 −0.129161
934934 0 0
935935 −3.85495e10 −1.54233
936936 0 0
937937 −2.95508e10 −1.17349 −0.586746 0.809771i 0.699591π-0.699591\pi
−0.586746 + 0.809771i 0.699591π0.699591\pi
938938 0 0
939939 −1.63136e10 −0.643014
940940 0 0
941941 1.39298e10 0.544979 0.272489 0.962159i 0.412153π-0.412153\pi
0.272489 + 0.962159i 0.412153π0.412153\pi
942942 0 0
943943 1.06420e9 0.0413269
944944 0 0
945945 −9.71257e10 −3.74389
946946 0 0
947947 2.48316e10 0.950122 0.475061 0.879953i 0.342426π-0.342426\pi
0.475061 + 0.879953i 0.342426π0.342426\pi
948948 0 0
949949 1.40452e10 0.533454
950950 0 0
951951 1.94189e9 0.0732137
952952 0 0
953953 −3.01791e10 −1.12949 −0.564744 0.825266i 0.691025π-0.691025\pi
−0.564744 + 0.825266i 0.691025π0.691025\pi
954954 0 0
955955 −9.65515e10 −3.58713
956956 0 0
957957 3.26658e9 0.120476
958958 0 0
959959 −1.56373e10 −0.572526
960960 0 0
961961 1.14339e9 0.0415589
962962 0 0
963963 1.41279e9 0.0509783
964964 0 0
965965 3.67567e10 1.31671
966966 0 0
967967 2.93661e10 1.04437 0.522184 0.852833i 0.325118π-0.325118\pi
0.522184 + 0.852833i 0.325118π0.325118\pi
968968 0 0
969969 −7.16472e9 −0.252968
970970 0 0
971971 2.39542e10 0.839683 0.419841 0.907598i 0.362086π-0.362086\pi
0.419841 + 0.907598i 0.362086π0.362086\pi
972972 0 0
973973 −8.93961e10 −3.11117
974974 0 0
975975 −3.54177e10 −1.22378
976976 0 0
977977 2.91663e10 1.00058 0.500289 0.865859i 0.333227π-0.333227\pi
0.500289 + 0.865859i 0.333227π0.333227\pi
978978 0 0
979979 −6.53513e10 −2.22595
980980 0 0
981981 1.05377e10 0.356372
982982 0 0
983983 −4.44637e9 −0.149303 −0.0746514 0.997210i 0.523784π-0.523784\pi
−0.0746514 + 0.997210i 0.523784π0.523784\pi
984984 0 0
985985 5.61375e10 1.87166
986986 0 0
987987 9.16707e9 0.303473
988988 0 0
989989 1.63826e10 0.538514
990990 0 0
991991 −3.36917e10 −1.09968 −0.549838 0.835271i 0.685311π-0.685311\pi
−0.549838 + 0.835271i 0.685311π0.685311\pi
992992 0 0
993993 −9.64017e9 −0.312437
994994 0 0
995995 9.73474e10 3.13288
996996 0 0
997997 −7.98360e9 −0.255132 −0.127566 0.991830i 0.540717π-0.540717\pi
−0.127566 + 0.991830i 0.540717π0.540717\pi
998998 0 0
999999 −5.36069e9 −0.170115
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.8.a.c.1.3 6
4.3 odd 2 74.8.a.c.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.4 6 4.3 odd 2
592.8.a.c.1.3 6 1.1 even 1 trivial