Properties

Label 6.11
Level 6
Weight 11
Dimension 4
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 22
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(22\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(6))\).

Total New Old
Modular forms 12 4 8
Cusp forms 8 4 4
Eisenstein series 4 0 4

Trace form

\( 4 q + 84 q^{3} - 2048 q^{4} + 5376 q^{6} - 45112 q^{7} + 159012 q^{9} - 53760 q^{10} - 43008 q^{12} + 275240 q^{13} - 1180800 q^{15} + 1048576 q^{16} - 2907648 q^{18} - 1568728 q^{19} + 9628008 q^{21} + 7730688 q^{22}+ \cdots - 2626912512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.11.b \(\chi_{6}(5, \cdot)\) 6.11.b.a 4 1

Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{11}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 1}\)