Properties

Label 6.12
Level 6
Weight 12
Dimension 3
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 24
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(6))\).

Total New Old
Modular forms 13 3 10
Cusp forms 9 3 6
Eisenstein series 4 0 4

Trace form

\( 3 q - 32 q^{2} + 243 q^{3} + 3072 q^{4} - 2334 q^{5} + 7776 q^{6} + 55392 q^{7} - 32768 q^{8} + 177147 q^{9} + 307008 q^{10} - 1699116 q^{11} + 248832 q^{12} + 217266 q^{13} + 335360 q^{14} - 3369438 q^{15}+ \cdots - 100331100684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.12.a \(\chi_{6}(1, \cdot)\) 6.12.a.a 1 1
6.12.a.b 1
6.12.a.c 1

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)