Properties

Label 6.16
Level 6
Weight 16
Dimension 3
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 32
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(6))\).

Total New Old
Modular forms 17 3 14
Cusp forms 13 3 10
Eisenstein series 4 0 4

Trace form

\( 3 q + 128 q^{2} - 2187 q^{3} + 49152 q^{4} - 351654 q^{5} + 279936 q^{6} - 247368 q^{7} + 2097152 q^{8} + 14348907 q^{9} + 35497728 q^{10} + 54814524 q^{11} - 35831808 q^{12} + 236812146 q^{13} - 550077440 q^{14}+ \cdots + 262176169041756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.16.a \(\chi_{6}(1, \cdot)\) 6.16.a.a 1 1
6.16.a.b 1
6.16.a.c 1

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 1}\)