Properties

Label 6.21.b
Level $6$
Weight $21$
Character orbit 6.b
Rep. character $\chi_{6}(5,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $1$
Sturm bound $21$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 6.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(21\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(6, [\chi])\).

Total New Old
Modular forms 22 6 16
Cusp forms 18 6 12
Eisenstein series 4 0 4

Trace form

\( 6 q + 18846 q^{3} - 3145728 q^{4} + 35057664 q^{6} - 566671812 q^{7} + 1944941382 q^{9} + 5360984064 q^{10} - 9880731648 q^{12} - 49898545620 q^{13} + 487708151328 q^{15} + 1649267441664 q^{16} - 3239129751552 q^{18}+ \cdots - 22\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(6, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
6.21.b.a 6.b 3.b $6$ $15.211$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 6.21.b.a \(0\) \(18846\) \(0\) \(-566671812\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(3141-11\beta _{1}-\beta _{2})q^{3}+\cdots\)

Decomposition of \(S_{21}^{\mathrm{old}}(6, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(6, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)