Defining parameters
Level: | \( N \) | \(=\) | \( 6 = 2 \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 21 \) |
Character orbit: | \([\chi]\) | \(=\) | 6.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(6, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 6 | 16 |
Cusp forms | 18 | 6 | 12 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(6, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
6.21.b.a | $6$ | $15.211$ | \(\mathbb{Q}[x]/(x^{6} + \cdots)\) | None | \(0\) | \(18846\) | \(0\) | \(-566671812\) | \(q+\beta _{1}q^{2}+(3141-11\beta _{1}-\beta _{2})q^{3}+\cdots\) |
Decomposition of \(S_{21}^{\mathrm{old}}(6, [\chi])\) into lower level spaces
\( S_{21}^{\mathrm{old}}(6, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)