Properties

Label 6.5.b
Level $6$
Weight $5$
Character orbit 6.b
Rep. character $\chi_{6}(5,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 6.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(6, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 6 q^{3} - 16 q^{4} + 48 q^{6} + 52 q^{7} - 126 q^{9} - 96 q^{10} + 48 q^{12} + 100 q^{13} + 288 q^{15} + 128 q^{16} - 288 q^{18} - 716 q^{19} - 156 q^{21} + 672 q^{22} - 384 q^{24} + 674 q^{25} + 1242 q^{27}+ \cdots + 12096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(6, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
6.5.b.a 6.b 3.b $2$ $0.620$ \(\Q(\sqrt{-2}) \) None 6.5.b.a \(0\) \(-6\) \(0\) \(52\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+(-3-3\beta )q^{3}-8q^{4}+6\beta q^{5}+\cdots\)