Defining parameters
Level: | \( N \) | \(=\) | \( 6 = 2 \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 6.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(5\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(6, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 2 | 4 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(6, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
6.5.b.a | $2$ | $0.620$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(-6\) | \(0\) | \(52\) | \(q+\beta q^{2}+(-3-3\beta )q^{3}-8q^{4}+6\beta q^{5}+\cdots\) |