Properties

Label 600.2.b
Level $600$
Weight $2$
Character orbit 600.b
Rep. character $\chi_{600}(251,\cdot)$
Character field $\Q$
Dimension $70$
Newform subspaces $9$
Sturm bound $240$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(240\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(7\), \(11\), \(23\), \(43\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(600, [\chi])\).

Total New Old
Modular forms 132 82 50
Cusp forms 108 70 38
Eisenstein series 24 12 12

Trace form

\( 70 q + 2 q^{3} + 4 q^{4} - 2 q^{6} + 2 q^{9} + 12 q^{12} + 4 q^{18} - 4 q^{19} - 20 q^{22} + 30 q^{24} + 14 q^{27} + 4 q^{28} - 12 q^{34} - 10 q^{36} - 32 q^{42} + 20 q^{43} - 8 q^{46} + 12 q^{48} - 22 q^{49}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
600.2.b.a 600.b 24.f $2$ $4.791$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 24.2.f.a \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}+(1-\beta )q^{3}-2q^{4}+(2+\beta )q^{6}+\cdots\)
600.2.b.b 600.b 24.f $4$ $4.791$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 600.2.b.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}+(-1-\beta _{2})q^{3}-2q^{4}+(-1+\cdots)q^{6}+\cdots\)
600.2.b.c 600.b 24.f $4$ $4.791$ \(\Q(\sqrt{-3}, \sqrt{5})\) \(\Q(\sqrt{-15}) \) 120.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}+\beta _{3}q^{4}+(-2+\cdots)q^{6}+\cdots\)
600.2.b.d 600.b 24.f $4$ $4.791$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 600.2.b.b \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{3}-2q^{4}+(-1+\cdots)q^{6}+\cdots\)
600.2.b.e 600.b 24.f $8$ $4.791$ 8.0.1649659456.5 None 120.2.b.a \(-1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(\beta _{1}+\beta _{3}+\beta _{4})q^{4}+\cdots\)
600.2.b.f 600.b 24.f $8$ $4.791$ 8.0.1649659456.5 None 120.2.b.a \(1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(\beta _{1}+\beta _{3}+\beta _{4})q^{4}+\cdots\)
600.2.b.g 600.b 24.f $12$ $4.791$ 12.0.\(\cdots\).1 None 600.2.b.g \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{8}q^{2}-\beta _{5}q^{3}+(1+\beta _{4})q^{4}+(-\beta _{4}+\cdots)q^{6}+\cdots\)
600.2.b.h 600.b 24.f $12$ $4.791$ 12.0.\(\cdots\).1 None 600.2.b.g \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(1+\beta _{2})q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)
600.2.b.i 600.b 24.f $16$ $4.791$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 120.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{10}q^{2}+\beta _{5}q^{3}-\beta _{14}q^{4}+(\beta _{7}+\beta _{12}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)