Defining parameters
Level: | \( N \) | \(=\) | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 600.x (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 60 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(600, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 0 | 528 |
Cusp forms | 432 | 0 | 432 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{3}^{\mathrm{old}}(600, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)