Properties

Label 600.6
Level 600
Weight 6
Dimension 18581
Nonzero newspaces 18
Sturm bound 115200
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(115200\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(600))\).

Total New Old
Modular forms 48672 18745 29927
Cusp forms 47328 18581 28747
Eisenstein series 1344 164 1180

Trace form

\( 18581 q + 2 q^{2} - 23 q^{3} - 68 q^{4} - 82 q^{5} + 158 q^{6} + 108 q^{7} + 68 q^{8} - 917 q^{9} - 32 q^{10} - 60 q^{11} + 1444 q^{12} + 4610 q^{13} - 7300 q^{14} - 2488 q^{15} - 3272 q^{16} - 3942 q^{17}+ \cdots - 994852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(600))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
600.6.a \(\chi_{600}(1, \cdot)\) 600.6.a.a 1 1
600.6.a.b 1
600.6.a.c 1
600.6.a.d 1
600.6.a.e 1
600.6.a.f 1
600.6.a.g 1
600.6.a.h 1
600.6.a.i 1
600.6.a.j 2
600.6.a.k 2
600.6.a.l 2
600.6.a.m 2
600.6.a.n 2
600.6.a.o 2
600.6.a.p 3
600.6.a.q 3
600.6.a.r 3
600.6.a.s 3
600.6.a.t 3
600.6.a.u 3
600.6.a.v 4
600.6.a.w 4
600.6.b \(\chi_{600}(251, \cdot)\) n/a 374 1
600.6.d \(\chi_{600}(349, \cdot)\) n/a 180 1
600.6.f \(\chi_{600}(49, \cdot)\) 600.6.f.a 2 1
600.6.f.b 2
600.6.f.c 2
600.6.f.d 2
600.6.f.e 2
600.6.f.f 2
600.6.f.g 2
600.6.f.h 2
600.6.f.i 2
600.6.f.j 4
600.6.f.k 4
600.6.f.l 4
600.6.f.m 4
600.6.f.n 6
600.6.f.o 6
600.6.h \(\chi_{600}(551, \cdot)\) None 0 1
600.6.k \(\chi_{600}(301, \cdot)\) n/a 190 1
600.6.m \(\chi_{600}(299, \cdot)\) n/a 356 1
600.6.o \(\chi_{600}(599, \cdot)\) None 0 1
600.6.r \(\chi_{600}(257, \cdot)\) n/a 180 2
600.6.s \(\chi_{600}(7, \cdot)\) None 0 2
600.6.v \(\chi_{600}(43, \cdot)\) n/a 360 2
600.6.w \(\chi_{600}(293, \cdot)\) n/a 712 2
600.6.y \(\chi_{600}(121, \cdot)\) n/a 304 4
600.6.ba \(\chi_{600}(71, \cdot)\) None 0 4
600.6.bc \(\chi_{600}(169, \cdot)\) n/a 296 4
600.6.be \(\chi_{600}(109, \cdot)\) n/a 1200 4
600.6.bg \(\chi_{600}(11, \cdot)\) n/a 2384 4
600.6.bi \(\chi_{600}(119, \cdot)\) None 0 4
600.6.bk \(\chi_{600}(59, \cdot)\) n/a 2384 4
600.6.bm \(\chi_{600}(61, \cdot)\) n/a 1200 4
600.6.bp \(\chi_{600}(53, \cdot)\) n/a 4768 8
600.6.bq \(\chi_{600}(67, \cdot)\) n/a 2400 8
600.6.bt \(\chi_{600}(103, \cdot)\) None 0 8
600.6.bu \(\chi_{600}(17, \cdot)\) n/a 1200 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(600))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(600)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(600))\)\(^{\oplus 1}\)