Properties

Label 603.1
Level 603
Weight 1
Dimension 11
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 26928
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 603 = 3^{2} \cdot 67 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(26928\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(603))\).

Total New Old
Modular forms 567 304 263
Cusp forms 39 11 28
Eisenstein series 528 293 235

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 11 0 0 0

Trace form

\( 11 q - 11 q^{52} - 11 q^{73} - 11 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(603))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
603.1.b \(\chi_{603}(334, \cdot)\) 603.1.b.a 1 1
603.1.c \(\chi_{603}(269, \cdot)\) None 0 1
603.1.i \(\chi_{603}(230, \cdot)\) None 0 2
603.1.j \(\chi_{603}(97, \cdot)\) None 0 2
603.1.n \(\chi_{603}(305, \cdot)\) None 0 2
603.1.o \(\chi_{603}(172, \cdot)\) None 0 2
603.1.p \(\chi_{603}(499, \cdot)\) None 0 2
603.1.q \(\chi_{603}(68, \cdot)\) None 0 2
603.1.r \(\chi_{603}(133, \cdot)\) None 0 2
603.1.s \(\chi_{603}(29, \cdot)\) None 0 2
603.1.w \(\chi_{603}(62, \cdot)\) None 0 10
603.1.x \(\chi_{603}(109, \cdot)\) 603.1.x.a 10 10
603.1.bd \(\chi_{603}(23, \cdot)\) None 0 20
603.1.be \(\chi_{603}(43, \cdot)\) None 0 20
603.1.bf \(\chi_{603}(14, \cdot)\) None 0 20
603.1.bg \(\chi_{603}(7, \cdot)\) None 0 20
603.1.bh \(\chi_{603}(28, \cdot)\) None 0 20
603.1.bi \(\chi_{603}(17, \cdot)\) None 0 20
603.1.bm \(\chi_{603}(31, \cdot)\) None 0 20
603.1.bn \(\chi_{603}(65, \cdot)\) None 0 20

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(603))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(603)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(67))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(201))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(603))\)\(^{\oplus 1}\)