Defining parameters
Level: | \( N \) | \(=\) | \( 605 = 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 605.m (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(132\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(605, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 496 | 128 |
Cusp forms | 432 | 368 | 64 |
Eisenstein series | 192 | 128 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(605, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
605.2.m.a | $16$ | $4.831$ | 16.0.\(\cdots\).1 | \(\Q(\sqrt{-11}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+(\beta _{1}+\beta _{4}+\beta _{5})q^{3}+(-2\beta _{5}-2\beta _{7}+\cdots)q^{4}+\cdots\) |
605.2.m.b | $16$ | $4.831$ | \(\Q(\zeta_{40})\) | None | \(0\) | \(4\) | \(8\) | \(0\) | \(q+(\beta_{15}+\beta_{12}+\cdots+\beta_{9})q^{2}+\cdots+(\beta_{6}+\beta_1)q^{3}+\cdots\) |
605.2.m.c | $32$ | $4.831$ | None | \(0\) | \(6\) | \(-2\) | \(-20\) | ||
605.2.m.d | $32$ | $4.831$ | None | \(0\) | \(6\) | \(-2\) | \(20\) | ||
605.2.m.e | $32$ | $4.831$ | None | \(10\) | \(-4\) | \(-2\) | \(0\) | ||
605.2.m.f | $80$ | $4.831$ | None | \(0\) | \(-4\) | \(-4\) | \(0\) | ||
605.2.m.g | $160$ | $4.831$ | None | \(0\) | \(-8\) | \(4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(605, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(605, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)