Properties

Label 605.2.u
Level $605$
Weight $2$
Character orbit 605.u
Rep. character $\chi_{605}(4,\cdot)$
Character field $\Q(\zeta_{110})$
Dimension $2560$
Newform subspaces $1$
Sturm bound $132$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.u (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 605 \)
Character field: \(\Q(\zeta_{110})\)
Newform subspaces: \( 1 \)
Sturm bound: \(132\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(605, [\chi])\).

Total New Old
Modular forms 2720 2720 0
Cusp forms 2560 2560 0
Eisenstein series 160 160 0

Trace form

\( 2560 q - 144 q^{4} - 43 q^{5} - 114 q^{6} + 534 q^{9} - 22 q^{10} - 104 q^{11} - 80 q^{14} - 58 q^{15} - 40 q^{16} - 94 q^{19} - 32 q^{20} - 162 q^{21} - 248 q^{24} - 25 q^{25} - 124 q^{26} - 90 q^{29}+ \cdots + 226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(605, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
605.2.u.a 605.u 605.u $2560$ $4.831$ None 605.2.u.a \(0\) \(0\) \(-43\) \(0\) $\mathrm{SU}(2)[C_{110}]$