Defining parameters
Level: | \( N \) | \(=\) | \( 6069 = 3 \cdot 7 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6069.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 39 \) | ||
Sturm bound: | \(1632\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(11\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6069))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 852 | 272 | 580 |
Cusp forms | 781 | 272 | 509 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(33\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(36\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(31\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(36\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(40\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(28\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(24\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(44\) |
Plus space | \(+\) | \(121\) | ||
Minus space | \(-\) | \(151\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6069))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6069)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2023))\)\(^{\oplus 2}\)