Properties

Label 612.4.a
Level $612$
Weight $4$
Character orbit 612.a
Rep. character $\chi_{612}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $10$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 612.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(432\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(612))\).

Total New Old
Modular forms 336 20 316
Cusp forms 312 20 292
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(7\)
\(-\)\(-\)\(-\)\(-\)\(5\)
Plus space\(+\)\(11\)
Minus space\(-\)\(9\)

Trace form

\( 20 q - 18 q^{5} - 20 q^{7} + 6 q^{11} + 4 q^{13} - 34 q^{17} + 104 q^{19} - 24 q^{23} + 160 q^{25} - 42 q^{29} + 116 q^{31} - 24 q^{35} + 342 q^{37} + 156 q^{41} - 100 q^{43} + 192 q^{47} + 1316 q^{49}+ \cdots + 1588 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(612))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 17
612.4.a.a 612.a 1.a $1$ $36.109$ \(\Q\) None 612.4.a.a \(0\) \(0\) \(-17\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-17q^{5}+6q^{7}+17q^{11}+43q^{13}+\cdots\)
612.4.a.b 612.a 1.a $1$ $36.109$ \(\Q\) None 204.4.a.a \(0\) \(0\) \(3\) \(-16\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}-2^{4}q^{7}+57q^{11}-5^{2}q^{13}+\cdots\)
612.4.a.c 612.a 1.a $1$ $36.109$ \(\Q\) None 68.4.a.a \(0\) \(0\) \(8\) \(-12\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{5}-12q^{7}+10q^{11}-38q^{13}+\cdots\)
612.4.a.d 612.a 1.a $1$ $36.109$ \(\Q\) None 612.4.a.a \(0\) \(0\) \(17\) \(6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+17q^{5}+6q^{7}-17q^{11}+43q^{13}+\cdots\)
612.4.a.e 612.a 1.a $2$ $36.109$ \(\Q(\sqrt{217}) \) None 204.4.a.c \(0\) \(0\) \(-19\) \(18\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-9-\beta )q^{5}+(8+2\beta )q^{7}+(-9+3\beta )q^{11}+\cdots\)
612.4.a.f 612.a 1.a $2$ $36.109$ \(\Q(\sqrt{201}) \) None 204.4.a.b \(0\) \(0\) \(-3\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}-2\beta q^{7}+(5+5\beta )q^{11}+\cdots\)
612.4.a.g 612.a 1.a $3$ $36.109$ 3.3.1524.1 None 68.4.a.b \(0\) \(0\) \(-26\) \(8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-9+\beta _{1})q^{5}+(2+3\beta _{1}-\beta _{2})q^{7}+\cdots\)
612.4.a.h 612.a 1.a $3$ $36.109$ 3.3.104664.1 None 612.4.a.h \(0\) \(0\) \(-19\) \(-10\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-6-\beta _{1})q^{5}+(-2-4\beta _{1}+\beta _{2})q^{7}+\cdots\)
612.4.a.i 612.a 1.a $3$ $36.109$ 3.3.104664.1 None 612.4.a.h \(0\) \(0\) \(19\) \(-10\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(6+\beta _{1})q^{5}+(-2-4\beta _{1}+\beta _{2})q^{7}+\cdots\)
612.4.a.j 612.a 1.a $3$ $36.109$ 3.3.21324.1 None 204.4.a.d \(0\) \(0\) \(19\) \(-8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(7+\beta _{1}-\beta _{2})q^{5}+(-3+\beta _{1}+2\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(612))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(612)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 2}\)