Defining parameters
Level: | \( N \) | \(=\) | \( 6128 = 2^{4} \cdot 383 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6128.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(1536\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6128))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 774 | 191 | 583 |
Cusp forms | 763 | 191 | 572 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(383\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(48\) |
\(+\) | \(-\) | \(-\) | \(48\) |
\(-\) | \(+\) | \(-\) | \(56\) |
\(-\) | \(-\) | \(+\) | \(39\) |
Plus space | \(+\) | \(87\) | |
Minus space | \(-\) | \(104\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6128))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6128))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6128)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(383))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(766))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1532))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3064))\)\(^{\oplus 2}\)