Properties

Label 6128.2.a
Level $6128$
Weight $2$
Character orbit 6128.a
Rep. character $\chi_{6128}(1,\cdot)$
Character field $\Q$
Dimension $191$
Newform subspaces $18$
Sturm bound $1536$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6128 = 2^{4} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6128.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(1536\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6128))\).

Total New Old
Modular forms 774 191 583
Cusp forms 763 191 572
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(383\)FrickeDim
\(+\)\(+\)\(+\)\(48\)
\(+\)\(-\)\(-\)\(48\)
\(-\)\(+\)\(-\)\(56\)
\(-\)\(-\)\(+\)\(39\)
Plus space\(+\)\(87\)
Minus space\(-\)\(104\)

Trace form

\( 191 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 187 q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{17} + 10 q^{19} + 2 q^{23} + 185 q^{25} - 4 q^{27} + 6 q^{29} + 10 q^{31} - 8 q^{33} - 2 q^{37} - 8 q^{39} + 6 q^{41} + 18 q^{43}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6128))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 383
6128.2.a.a 6128.a 1.a $1$ $48.932$ \(\Q\) None 766.2.a.a \(0\) \(-2\) \(2\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{5}-3q^{7}+q^{9}+3q^{11}+\cdots\)
6128.2.a.b 6128.a 1.a $2$ $48.932$ \(\Q(\sqrt{21}) \) None 3064.2.a.a \(0\) \(-1\) \(-3\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-2+\beta )q^{5}+3q^{7}+(2+\beta )q^{9}+\cdots\)
6128.2.a.c 6128.a 1.a $2$ $48.932$ \(\Q(\sqrt{5}) \) None 383.2.a.a \(0\) \(3\) \(1\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(1-\beta )q^{5}+(3-2\beta )q^{7}+\cdots\)
6128.2.a.d 6128.a 1.a $3$ $48.932$ 3.3.469.1 None 3064.2.a.b \(0\) \(-1\) \(-1\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-\beta _{1}q^{5}+(\beta _{1}-\beta _{2})q^{7}+(1+\cdots)q^{9}+\cdots\)
6128.2.a.e 6128.a 1.a $4$ $48.932$ 4.4.15952.1 None 766.2.a.b \(0\) \(-8\) \(2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+(1-\beta _{1}-\beta _{2})q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\)
6128.2.a.f 6128.a 1.a $4$ $48.932$ 4.4.11661.1 None 1532.2.a.a \(0\) \(-2\) \(0\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(2+\beta _{2}-\beta _{3})q^{7}+\cdots\)
6128.2.a.g 6128.a 1.a $5$ $48.932$ 5.5.89417.1 None 766.2.a.c \(0\) \(2\) \(-3\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(-1+\beta _{1}-\beta _{3})q^{5}+(-1+\cdots)q^{7}+\cdots\)
6128.2.a.h 6128.a 1.a $5$ $48.932$ \(\Q(\zeta_{22})^+\) None 766.2.a.d \(0\) \(4\) \(-5\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(-1-\beta _{1}-\beta _{4})q^{5}+\cdots\)
6128.2.a.i 6128.a 1.a $6$ $48.932$ 6.6.3151861.1 None 383.2.a.b \(0\) \(-1\) \(-4\) \(7\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1-\beta _{4})q^{5}+(1+\beta _{5})q^{7}+\cdots\)
6128.2.a.j 6128.a 1.a $6$ $48.932$ 6.6.26017969.1 None 766.2.a.e \(0\) \(4\) \(1\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{3}+(\beta _{4}+\beta _{5})q^{5}-\beta _{4}q^{7}+\cdots\)
6128.2.a.k 6128.a 1.a $10$ $48.932$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 766.2.a.f \(0\) \(0\) \(3\) \(12\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{3}-\beta _{5}q^{5}+(1-\beta _{2}-\beta _{3})q^{7}+\cdots\)
6128.2.a.l 6128.a 1.a $12$ $48.932$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1532.2.a.b \(0\) \(-1\) \(3\) \(-23\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-\beta _{7}q^{5}+(-2+\beta _{2}+\beta _{5}+\cdots)q^{7}+\cdots\)
6128.2.a.m 6128.a 1.a $16$ $48.932$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1532.2.a.c \(0\) \(5\) \(-3\) \(18\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{9}q^{5}+(1+\beta _{11})q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
6128.2.a.n 6128.a 1.a $19$ $48.932$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 3064.2.a.c \(0\) \(4\) \(-7\) \(-11\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{5}q^{5}+(\beta _{8}+\beta _{10})q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
6128.2.a.o 6128.a 1.a $21$ $48.932$ None 3064.2.a.d \(0\) \(5\) \(-2\) \(11\) $+$ $-$ $\mathrm{SU}(2)$
6128.2.a.p 6128.a 1.a $24$ $48.932$ None 383.2.a.c \(0\) \(-2\) \(3\) \(-17\) $-$ $+$ $\mathrm{SU}(2)$
6128.2.a.q 6128.a 1.a $24$ $48.932$ None 3064.2.a.e \(0\) \(0\) \(11\) \(5\) $+$ $-$ $\mathrm{SU}(2)$
6128.2.a.r 6128.a 1.a $27$ $48.932$ None 3064.2.a.f \(0\) \(-7\) \(0\) \(-13\) $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6128))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(6128)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(383))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(766))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1532))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3064))\)\(^{\oplus 2}\)