Properties

Label 616.4
Level 616
Weight 4
Dimension 18142
Nonzero newspaces 24
Sturm bound 92160
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(92160\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(616))\).

Total New Old
Modular forms 35280 18502 16778
Cusp forms 33840 18142 15698
Eisenstein series 1440 360 1080

Trace form

\( 18142 q - 36 q^{2} - 44 q^{3} - 76 q^{4} - 8 q^{5} + 84 q^{6} - 22 q^{7} + 84 q^{8} - 24 q^{9} - 252 q^{10} - 164 q^{11} - 292 q^{12} - 68 q^{13} - 6 q^{14} + 560 q^{15} + 36 q^{16} - 344 q^{18} - 638 q^{19}+ \cdots - 15532 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(616))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
616.4.a \(\chi_{616}(1, \cdot)\) 616.4.a.a 1 1
616.4.a.b 2
616.4.a.c 2
616.4.a.d 2
616.4.a.e 4
616.4.a.f 4
616.4.a.g 5
616.4.a.h 6
616.4.a.i 6
616.4.a.j 7
616.4.a.k 7
616.4.c \(\chi_{616}(309, \cdot)\) n/a 180 1
616.4.e \(\chi_{616}(153, \cdot)\) 616.4.e.a 72 1
616.4.f \(\chi_{616}(351, \cdot)\) None 0 1
616.4.h \(\chi_{616}(419, \cdot)\) n/a 240 1
616.4.j \(\chi_{616}(111, \cdot)\) None 0 1
616.4.l \(\chi_{616}(43, \cdot)\) n/a 216 1
616.4.o \(\chi_{616}(461, \cdot)\) n/a 284 1
616.4.q \(\chi_{616}(177, \cdot)\) n/a 120 2
616.4.r \(\chi_{616}(113, \cdot)\) n/a 216 4
616.4.s \(\chi_{616}(285, \cdot)\) n/a 568 2
616.4.w \(\chi_{616}(199, \cdot)\) None 0 2
616.4.y \(\chi_{616}(219, \cdot)\) n/a 568 2
616.4.ba \(\chi_{616}(263, \cdot)\) None 0 2
616.4.bc \(\chi_{616}(243, \cdot)\) n/a 480 2
616.4.bd \(\chi_{616}(221, \cdot)\) n/a 480 2
616.4.bf \(\chi_{616}(241, \cdot)\) n/a 144 2
616.4.bi \(\chi_{616}(13, \cdot)\) n/a 1136 4
616.4.bl \(\chi_{616}(211, \cdot)\) n/a 864 4
616.4.bn \(\chi_{616}(223, \cdot)\) None 0 4
616.4.bp \(\chi_{616}(27, \cdot)\) n/a 1136 4
616.4.br \(\chi_{616}(127, \cdot)\) None 0 4
616.4.bs \(\chi_{616}(41, \cdot)\) n/a 288 4
616.4.bu \(\chi_{616}(141, \cdot)\) n/a 864 4
616.4.bw \(\chi_{616}(9, \cdot)\) n/a 576 8
616.4.by \(\chi_{616}(17, \cdot)\) n/a 576 8
616.4.ca \(\chi_{616}(37, \cdot)\) n/a 2272 8
616.4.cb \(\chi_{616}(3, \cdot)\) n/a 2272 8
616.4.cd \(\chi_{616}(39, \cdot)\) None 0 8
616.4.cf \(\chi_{616}(51, \cdot)\) n/a 2272 8
616.4.ch \(\chi_{616}(31, \cdot)\) None 0 8
616.4.cl \(\chi_{616}(61, \cdot)\) n/a 2272 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(616))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(616)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(616))\)\(^{\oplus 1}\)