Properties

Label 624.1
Level 624
Weight 1
Dimension 25
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 21504
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 8 \)
Sturm bound: \(21504\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(624))\).

Total New Old
Modular forms 748 123 625
Cusp forms 76 25 51
Eisenstein series 672 98 574

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 25 0 0 0

Trace form

\( 25 q + q^{3} + 2 q^{7} - q^{9} + 8 q^{12} - q^{13} + 2 q^{19} - 2 q^{21} + 8 q^{22} - q^{25} + q^{27} - 8 q^{30} + 2 q^{31} - 2 q^{37} - 5 q^{39} - 12 q^{43} - 17 q^{49} - 8 q^{52} - 8 q^{57} - 2 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(624))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
624.1.b \(\chi_{624}(233, \cdot)\) None 0 1
624.1.e \(\chi_{624}(391, \cdot)\) None 0 1
624.1.f \(\chi_{624}(209, \cdot)\) None 0 1
624.1.i \(\chi_{624}(415, \cdot)\) None 0 1
624.1.k \(\chi_{624}(79, \cdot)\) None 0 1
624.1.l \(\chi_{624}(545, \cdot)\) 624.1.l.a 1 1
624.1.o \(\chi_{624}(103, \cdot)\) None 0 1
624.1.p \(\chi_{624}(521, \cdot)\) None 0 1
624.1.s \(\chi_{624}(395, \cdot)\) None 0 2
624.1.t \(\chi_{624}(109, \cdot)\) None 0 2
624.1.w \(\chi_{624}(53, \cdot)\) None 0 2
624.1.y \(\chi_{624}(259, \cdot)\) None 0 2
624.1.z \(\chi_{624}(73, \cdot)\) None 0 2
624.1.ba \(\chi_{624}(385, \cdot)\) None 0 2
624.1.bd \(\chi_{624}(47, \cdot)\) 624.1.bd.a 2 2
624.1.bd.b 2
624.1.be \(\chi_{624}(359, \cdot)\) None 0 2
624.1.bi \(\chi_{624}(77, \cdot)\) 624.1.bi.a 8 2
624.1.bk \(\chi_{624}(235, \cdot)\) None 0 2
624.1.bl \(\chi_{624}(421, \cdot)\) None 0 2
624.1.bo \(\chi_{624}(83, \cdot)\) None 0 2
624.1.bp \(\chi_{624}(127, \cdot)\) None 0 2
624.1.bs \(\chi_{624}(113, \cdot)\) 624.1.bs.a 2 2
624.1.bt \(\chi_{624}(55, \cdot)\) None 0 2
624.1.bw \(\chi_{624}(329, \cdot)\) None 0 2
624.1.bx \(\chi_{624}(185, \cdot)\) None 0 2
624.1.by \(\chi_{624}(199, \cdot)\) None 0 2
624.1.cb \(\chi_{624}(17, \cdot)\) 624.1.cb.a 2 2
624.1.cc \(\chi_{624}(367, \cdot)\) None 0 2
624.1.cf \(\chi_{624}(37, \cdot)\) None 0 4
624.1.cg \(\chi_{624}(323, \cdot)\) None 0 4
624.1.ci \(\chi_{624}(139, \cdot)\) None 0 4
624.1.ck \(\chi_{624}(101, \cdot)\) None 0 4
624.1.co \(\chi_{624}(71, \cdot)\) None 0 4
624.1.cp \(\chi_{624}(383, \cdot)\) 624.1.cp.a 4 4
624.1.cp.b 4
624.1.cs \(\chi_{624}(97, \cdot)\) None 0 4
624.1.ct \(\chi_{624}(409, \cdot)\) None 0 4
624.1.cu \(\chi_{624}(43, \cdot)\) None 0 4
624.1.cw \(\chi_{624}(29, \cdot)\) None 0 4
624.1.cy \(\chi_{624}(11, \cdot)\) None 0 4
624.1.db \(\chi_{624}(349, \cdot)\) None 0 4

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(624))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(624)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(624))\)\(^{\oplus 1}\)